mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-06 13:33:37 +00:00
core[patch], community[patch], openai[patch]: consolidate openai tool… (#16485)
… converters One way to convert anything to an OAI function: convert_to_openai_function One way to convert anything to an OAI tool: convert_to_openai_tool Corresponding bind functions on OAI models: bind_functions, bind_tools
This commit is contained in:
@@ -1,7 +1,9 @@
|
||||
"""Methods for creating function specs in the style of OpenAI Functions"""
|
||||
from __future__ import annotations
|
||||
|
||||
import inspect
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Callable,
|
||||
Dict,
|
||||
@@ -16,12 +18,16 @@ from typing import (
|
||||
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
from langchain_core._api import deprecated
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from langchain_core.utils.json_schema import dereference_refs
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from langchain_core.tools import BaseTool
|
||||
|
||||
PYTHON_TO_JSON_TYPES = {
|
||||
"str": "string",
|
||||
"int": "number",
|
||||
"int": "integer",
|
||||
"float": "number",
|
||||
"bool": "boolean",
|
||||
}
|
||||
@@ -45,22 +51,47 @@ class ToolDescription(TypedDict):
|
||||
function: FunctionDescription
|
||||
|
||||
|
||||
def _rm_titles(kv: dict) -> dict:
|
||||
new_kv = {}
|
||||
for k, v in kv.items():
|
||||
if k == "title":
|
||||
continue
|
||||
elif isinstance(v, dict):
|
||||
new_kv[k] = _rm_titles(v)
|
||||
else:
|
||||
new_kv[k] = v
|
||||
return new_kv
|
||||
|
||||
|
||||
@deprecated(
|
||||
"0.1.16",
|
||||
alternative="langchain_core.utils.function_calling.convert_to_openai_function()",
|
||||
removal="0.2.0",
|
||||
)
|
||||
def convert_pydantic_to_openai_function(
|
||||
model: Type[BaseModel],
|
||||
*,
|
||||
name: Optional[str] = None,
|
||||
description: Optional[str] = None,
|
||||
rm_titles: bool = True,
|
||||
) -> FunctionDescription:
|
||||
"""Converts a Pydantic model to a function description for the OpenAI API."""
|
||||
schema = dereference_refs(model.schema())
|
||||
schema.pop("definitions", None)
|
||||
title = schema.pop("title", "")
|
||||
default_description = schema.pop("description", "")
|
||||
return {
|
||||
"name": name or schema["title"],
|
||||
"description": description or schema["description"],
|
||||
"parameters": schema,
|
||||
"name": name or title,
|
||||
"description": description or default_description,
|
||||
"parameters": _rm_titles(schema) if rm_titles else schema,
|
||||
}
|
||||
|
||||
|
||||
@deprecated(
|
||||
"0.1.16",
|
||||
alternative="langchain_core.utils.function_calling.convert_to_openai_function()",
|
||||
removal="0.2.0",
|
||||
)
|
||||
def convert_pydantic_to_openai_tool(
|
||||
model: Type[BaseModel],
|
||||
*,
|
||||
@@ -132,8 +163,19 @@ def _get_python_function_arguments(function: Callable, arg_descriptions: dict) -
|
||||
# Mypy error:
|
||||
# "type" has no attribute "schema"
|
||||
properties[arg] = arg_type.schema() # type: ignore[attr-defined]
|
||||
elif arg_type.__name__ in PYTHON_TO_JSON_TYPES:
|
||||
elif (
|
||||
hasattr(arg_type, "__name__")
|
||||
and getattr(arg_type, "__name__") in PYTHON_TO_JSON_TYPES
|
||||
):
|
||||
properties[arg] = {"type": PYTHON_TO_JSON_TYPES[arg_type.__name__]}
|
||||
elif (
|
||||
hasattr(arg_type, "__dict__")
|
||||
and getattr(arg_type, "__dict__").get("__origin__", None) == Literal
|
||||
):
|
||||
properties[arg] = {
|
||||
"enum": list(arg_type.__args__), # type: ignore
|
||||
"type": PYTHON_TO_JSON_TYPES[arg_type.__args__[0].__class__.__name__], # type: ignore
|
||||
}
|
||||
if arg in arg_descriptions:
|
||||
if arg not in properties:
|
||||
properties[arg] = {}
|
||||
@@ -153,6 +195,11 @@ def _get_python_function_required_args(function: Callable) -> List[str]:
|
||||
return required
|
||||
|
||||
|
||||
@deprecated(
|
||||
"0.1.16",
|
||||
alternative="langchain_core.utils.function_calling.convert_to_openai_function()",
|
||||
removal="0.2.0",
|
||||
)
|
||||
def convert_python_function_to_openai_function(
|
||||
function: Callable,
|
||||
) -> Dict[str, Any]:
|
||||
@@ -174,8 +221,49 @@ def convert_python_function_to_openai_function(
|
||||
}
|
||||
|
||||
|
||||
@deprecated(
|
||||
"0.1.16",
|
||||
alternative="langchain_core.utils.function_calling.convert_to_openai_function()",
|
||||
removal="0.2.0",
|
||||
)
|
||||
def format_tool_to_openai_function(tool: BaseTool) -> FunctionDescription:
|
||||
"""Format tool into the OpenAI function API."""
|
||||
if tool.args_schema:
|
||||
return convert_pydantic_to_openai_function(
|
||||
tool.args_schema, name=tool.name, description=tool.description
|
||||
)
|
||||
else:
|
||||
return {
|
||||
"name": tool.name,
|
||||
"description": tool.description,
|
||||
"parameters": {
|
||||
# This is a hack to get around the fact that some tools
|
||||
# do not expose an args_schema, and expect an argument
|
||||
# which is a string.
|
||||
# And Open AI does not support an array type for the
|
||||
# parameters.
|
||||
"properties": {
|
||||
"__arg1": {"title": "__arg1", "type": "string"},
|
||||
},
|
||||
"required": ["__arg1"],
|
||||
"type": "object",
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
@deprecated(
|
||||
"0.1.16",
|
||||
alternative="langchain_core.utils.function_calling.convert_to_openai_function()",
|
||||
removal="0.2.0",
|
||||
)
|
||||
def format_tool_to_openai_tool(tool: BaseTool) -> ToolDescription:
|
||||
"""Format tool into the OpenAI function API."""
|
||||
function = format_tool_to_openai_function(tool)
|
||||
return {"type": "function", "function": function}
|
||||
|
||||
|
||||
def convert_to_openai_function(
|
||||
function: Union[Dict[str, Any], Type[BaseModel], Callable],
|
||||
function: Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool],
|
||||
) -> Dict[str, Any]:
|
||||
"""Convert a raw function/class to an OpenAI function.
|
||||
|
||||
@@ -188,15 +276,38 @@ def convert_to_openai_function(
|
||||
A dict version of the passed in function which is compatible with the
|
||||
OpenAI function-calling API.
|
||||
"""
|
||||
from langchain_core.tools import BaseTool
|
||||
|
||||
if isinstance(function, dict):
|
||||
return function
|
||||
elif isinstance(function, type) and issubclass(function, BaseModel):
|
||||
return cast(Dict, convert_pydantic_to_openai_function(function))
|
||||
elif isinstance(function, BaseTool):
|
||||
return format_tool_to_openai_function(function)
|
||||
elif callable(function):
|
||||
return convert_python_function_to_openai_function(function)
|
||||
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported function type {type(function)}. Functions must be passed in"
|
||||
f" as Dict, pydantic.BaseModel, or Callable."
|
||||
)
|
||||
|
||||
|
||||
def convert_to_openai_tool(
|
||||
tool: Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool],
|
||||
) -> Dict[str, Any]:
|
||||
"""Convert a raw function/class to an OpenAI tool.
|
||||
|
||||
Args:
|
||||
tool: Either a dictionary, a pydantic.BaseModel class, Python function, or
|
||||
BaseTool. If a dictionary is passed in, it is assumed to already be a valid
|
||||
OpenAI tool or OpenAI function.
|
||||
|
||||
Returns:
|
||||
A dict version of the passed in tool which is compatible with the
|
||||
OpenAI tool-calling API.
|
||||
"""
|
||||
if isinstance(tool, dict) and "type" in tool:
|
||||
return tool
|
||||
function = convert_to_openai_function(tool)
|
||||
return {"type": "function", "function": function}
|
||||
|
74
libs/core/tests/unit_tests/utils/test_function_calling.py
Normal file
74
libs/core/tests/unit_tests/utils/test_function_calling.py
Normal file
@@ -0,0 +1,74 @@
|
||||
from typing import Any, Callable, Literal, Type
|
||||
|
||||
import pytest
|
||||
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from langchain_core.tools import BaseTool
|
||||
from langchain_core.utils.function_calling import convert_to_openai_function
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def pydantic() -> Type[BaseModel]:
|
||||
class dummy_function(BaseModel):
|
||||
"""dummy function"""
|
||||
|
||||
arg1: int = Field(..., description="foo")
|
||||
arg2: Literal["bar", "baz"] = Field(..., description="one of 'bar', 'baz'")
|
||||
|
||||
return dummy_function
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def function() -> Callable:
|
||||
def dummy_function(arg1: int, arg2: Literal["bar", "baz"]) -> None:
|
||||
"""dummy function
|
||||
|
||||
Args:
|
||||
arg1: foo
|
||||
arg2: one of 'bar', 'baz'
|
||||
"""
|
||||
pass
|
||||
|
||||
return dummy_function
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def tool() -> BaseTool:
|
||||
class Schema(BaseModel):
|
||||
arg1: int = Field(..., description="foo")
|
||||
arg2: Literal["bar", "baz"] = Field(..., description="one of 'bar', 'baz'")
|
||||
|
||||
class DummyFunction(BaseTool):
|
||||
args_schema: Type[BaseModel] = Schema
|
||||
name: str = "dummy_function"
|
||||
description: str = "dummy function"
|
||||
|
||||
def _run(self, *args: Any, **kwargs: Any) -> Any:
|
||||
pass
|
||||
|
||||
return DummyFunction()
|
||||
|
||||
|
||||
def test_convert_to_openai_function(
|
||||
pydantic: Type[BaseModel], function: Callable, tool: BaseTool
|
||||
) -> None:
|
||||
expected = {
|
||||
"name": "dummy_function",
|
||||
"description": "dummy function",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"arg1": {"description": "foo", "type": "integer"},
|
||||
"arg2": {
|
||||
"description": "one of 'bar', 'baz'",
|
||||
"enum": ["bar", "baz"],
|
||||
"type": "string",
|
||||
},
|
||||
},
|
||||
"required": ["arg1", "arg2"],
|
||||
},
|
||||
}
|
||||
|
||||
for fn in (pydantic, function, tool, expected):
|
||||
actual = convert_to_openai_function(fn) # type: ignore
|
||||
assert actual == expected
|
Reference in New Issue
Block a user