mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-05 22:53:30 +00:00
NLPCloud client integration (#81)
lots of kwargs! generation docs here: https://docs.nlpcloud.com/#generation This somewhat breaks the paradigm introduced in LLM base class as the stop sequence isn't a list, and should rightfully be introduced at the time of initialization of the class, along with the other kwargs that depend on its presence (e.g. remove_end_sequence, etc.) curious if you'd want to refactor LLM base class to take out stop as a specific named kwarg?
This commit is contained in:
parent
6d8a657676
commit
efbc03bda8
@ -1,6 +1,7 @@
|
|||||||
"""Wrappers on top of large language models APIs."""
|
"""Wrappers on top of large language models APIs."""
|
||||||
from langchain.llms.cohere import Cohere
|
from langchain.llms.cohere import Cohere
|
||||||
from langchain.llms.huggingface_hub import HuggingFaceHub
|
from langchain.llms.huggingface_hub import HuggingFaceHub
|
||||||
|
from langchain.llms.nlpcloud import NLPCloud
|
||||||
from langchain.llms.openai import OpenAI
|
from langchain.llms.openai import OpenAI
|
||||||
|
|
||||||
__all__ = ["Cohere", "OpenAI", "HuggingFaceHub"]
|
__all__ = ["Cohere", "NLPCloud", "OpenAI", "HuggingFaceHub"]
|
||||||
|
136
langchain/llms/nlpcloud.py
Normal file
136
langchain/llms/nlpcloud.py
Normal file
@ -0,0 +1,136 @@
|
|||||||
|
"""Wrapper around NLPCloud APIs."""
|
||||||
|
import os
|
||||||
|
from typing import Any, Dict, List, Mapping, Optional
|
||||||
|
|
||||||
|
from pydantic import BaseModel, Extra, root_validator
|
||||||
|
|
||||||
|
from langchain.llms.base import LLM
|
||||||
|
|
||||||
|
|
||||||
|
class NLPCloud(BaseModel, LLM):
|
||||||
|
"""Wrapper around NLPCloud large language models.
|
||||||
|
|
||||||
|
To use, you should have the ``nlpcloud`` python package installed, and the
|
||||||
|
environment variable ``NLPCLOUD_API_KEY`` set with your API key.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from langchain import NLPCloud
|
||||||
|
nlpcloud = NLPCloud(model="gpt-neox-20b")
|
||||||
|
"""
|
||||||
|
|
||||||
|
client: Any #: :meta private:
|
||||||
|
model_name: str = "gpt-neox-20b"
|
||||||
|
"""Model name to use."""
|
||||||
|
temperature: float = 0.7
|
||||||
|
"""What sampling temperature to use."""
|
||||||
|
min_length: int = 1
|
||||||
|
"""The minimum number of tokens to generate in the completion."""
|
||||||
|
max_length: int = 256
|
||||||
|
"""The maximum number of tokens to generate in the completion."""
|
||||||
|
length_no_input: bool = True
|
||||||
|
"""Whether min_length and max_length should include the length of the input."""
|
||||||
|
remove_input: bool = True
|
||||||
|
"""Remove input text from API response"""
|
||||||
|
remove_end_sequence: bool = True
|
||||||
|
"""Whether or not to remove the end sequence token."""
|
||||||
|
bad_words: List[str] = []
|
||||||
|
"""List of tokens not allowed to be generated."""
|
||||||
|
top_p: int = 1
|
||||||
|
"""Total probability mass of tokens to consider at each step."""
|
||||||
|
top_k: int = 50
|
||||||
|
"""The number of highest probability tokens to keep for top-k filtering."""
|
||||||
|
repetition_penalty: float = 1.0
|
||||||
|
"""Penalizes repeated tokens. 1.0 means no penalty."""
|
||||||
|
length_penalty: float = 1.0
|
||||||
|
"""Exponential penalty to the length."""
|
||||||
|
do_sample: bool = True
|
||||||
|
"""Whether to use sampling (True) or greedy decoding."""
|
||||||
|
num_beams: int = 1
|
||||||
|
"""Number of beams for beam search."""
|
||||||
|
early_stopping: bool = False
|
||||||
|
"""Whether to stop beam search at num_beams sentences."""
|
||||||
|
num_return_sequences: int = 1
|
||||||
|
"""How many completions to generate for each prompt."""
|
||||||
|
|
||||||
|
nlpcloud_api_key: Optional[str] = os.environ.get("NLPCLOUD_API_KEY")
|
||||||
|
|
||||||
|
class Config:
|
||||||
|
"""Configuration for this pydantic object."""
|
||||||
|
|
||||||
|
extra = Extra.forbid
|
||||||
|
|
||||||
|
@root_validator()
|
||||||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||||||
|
"""Validate that api key and python package exists in environment."""
|
||||||
|
nlpcloud_api_key = values.get("nlpcloud_api_key")
|
||||||
|
|
||||||
|
if nlpcloud_api_key is None or nlpcloud_api_key == "":
|
||||||
|
raise ValueError(
|
||||||
|
"Did not find NLPCloud API key, please add an environment variable"
|
||||||
|
" `NLPCLOUD_API_KEY` which contains it, or pass `nlpcloud_api_key`"
|
||||||
|
" as a named parameter."
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
import nlpcloud
|
||||||
|
|
||||||
|
values["client"] = nlpcloud.Client(
|
||||||
|
values["model_name"], nlpcloud_api_key, gpu=True, lang="en"
|
||||||
|
)
|
||||||
|
except ImportError:
|
||||||
|
raise ValueError(
|
||||||
|
"Could not import nlpcloud python package. "
|
||||||
|
"Please it install it with `pip install nlpcloud`."
|
||||||
|
)
|
||||||
|
return values
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _default_params(self) -> Mapping[str, Any]:
|
||||||
|
"""Get the default parameters for calling NLPCloud API."""
|
||||||
|
return {
|
||||||
|
"temperature": self.temperature,
|
||||||
|
"min_length": self.min_length,
|
||||||
|
"max_length": self.max_length,
|
||||||
|
"length_no_input": self.length_no_input,
|
||||||
|
"remove_input": self.remove_input,
|
||||||
|
"remove_end_sequence": self.remove_end_sequence,
|
||||||
|
"bad_words": self.bad_words,
|
||||||
|
"top_p": self.top_p,
|
||||||
|
"top_k": self.top_k,
|
||||||
|
"repetition_penalty": self.repetition_penalty,
|
||||||
|
"length_penalty": self.length_penalty,
|
||||||
|
"do_sample": self.do_sample,
|
||||||
|
"num_beams": self.num_beams,
|
||||||
|
"early_stopping": self.early_stopping,
|
||||||
|
"num_return_sequences": self.num_return_sequences,
|
||||||
|
}
|
||||||
|
|
||||||
|
def __call__(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||||
|
"""Call out to NLPCloud's create endpoint.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
prompt: The prompt to pass into the model.
|
||||||
|
stop: Not supported by this interface (pass in init method)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The string generated by the model.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
response = nlpcloud("Tell me a joke.")
|
||||||
|
"""
|
||||||
|
if stop and len(stop) > 1:
|
||||||
|
raise ValueError(
|
||||||
|
"NLPCloud only supports a single stop sequence per generation."
|
||||||
|
"Pass in a list of length 1."
|
||||||
|
)
|
||||||
|
elif stop and len(stop) == 1:
|
||||||
|
end_sequence = stop[0]
|
||||||
|
else:
|
||||||
|
end_sequence = None
|
||||||
|
response = self.client.generation(
|
||||||
|
prompt, end_sequence=end_sequence, **self._default_params
|
||||||
|
)
|
||||||
|
return response["generated_text"]
|
@ -3,6 +3,7 @@
|
|||||||
cohere
|
cohere
|
||||||
openai
|
openai
|
||||||
google-search-results
|
google-search-results
|
||||||
|
nlpcloud
|
||||||
playwright
|
playwright
|
||||||
wikipedia
|
wikipedia
|
||||||
huggingface_hub
|
huggingface_hub
|
||||||
|
10
tests/integration_tests/llms/test_nlpcloud.py
Normal file
10
tests/integration_tests/llms/test_nlpcloud.py
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
"""Test NLPCloud API wrapper."""
|
||||||
|
|
||||||
|
from langchain.llms.nlpcloud import NLPCloud
|
||||||
|
|
||||||
|
|
||||||
|
def test_nlpcloud_call() -> None:
|
||||||
|
"""Test valid call to nlpcloud."""
|
||||||
|
llm = NLPCloud(max_length=10)
|
||||||
|
output = llm("Say foo:")
|
||||||
|
assert isinstance(output, str)
|
Loading…
Reference in New Issue
Block a user