mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-16 23:13:31 +00:00
community: Added Lantern as VectorStore (#12951)
Support [Lantern](https://github.com/lanterndata/lantern) as a new VectorStore type. - Added Lantern as VectorStore. It will support 3 distance functions `l2 squared`, `cosine` and `hamming` and will use `HNSW` index. - Added tests - Added example notebook
This commit is contained in:
@@ -458,6 +458,12 @@ def _import_zilliz() -> Any:
|
||||
return Zilliz
|
||||
|
||||
|
||||
def _import_lantern() -> Any:
|
||||
from langchain_community.vectorstores.lantern import Lantern
|
||||
|
||||
return Lantern
|
||||
|
||||
|
||||
def __getattr__(name: str) -> Any:
|
||||
if name == "AnalyticDB":
|
||||
return _import_analyticdb()
|
||||
@@ -599,6 +605,8 @@ def __getattr__(name: str) -> Any:
|
||||
return _import_zilliz()
|
||||
elif name == "VespaStore":
|
||||
return _import_vespa()
|
||||
elif name == "Lantern":
|
||||
return _import_lantern()
|
||||
else:
|
||||
raise AttributeError(f"Could not find: {name}")
|
||||
|
||||
@@ -673,4 +681,5 @@ __all__ = [
|
||||
"TencentVectorDB",
|
||||
"AzureCosmosDBVectorSearch",
|
||||
"VectorStore",
|
||||
"Lantern",
|
||||
]
|
||||
|
1018
libs/community/langchain_community/vectorstores/lantern.py
Normal file
1018
libs/community/langchain_community/vectorstores/lantern.py
Normal file
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,319 @@
|
||||
"""Test Lantern functionality."""
|
||||
import os
|
||||
from typing import List, Tuple
|
||||
|
||||
from langchain_core.documents import Document
|
||||
|
||||
from langchain_community.embeddings import FakeEmbeddings
|
||||
from langchain_community.vectorstores import Lantern
|
||||
|
||||
CONNECTION_STRING = Lantern.connection_string_from_db_params(
|
||||
driver=os.environ.get("TEST_LANTERN_DRIVER", "psycopg2"),
|
||||
host=os.environ.get("TEST_LANTERN_HOST", "localhost"),
|
||||
port=int(os.environ.get("TEST_LANTERN_PORT", "5432")),
|
||||
database=os.environ.get("TEST_LANTERN_DATABASE", "postgres"),
|
||||
user=os.environ.get("TEST_LANTERN_USER", "postgres"),
|
||||
password=os.environ.get("TEST_LANTERN_PASSWORD", "postgres"),
|
||||
)
|
||||
|
||||
|
||||
ADA_TOKEN_COUNT = 1536
|
||||
|
||||
|
||||
def fix_distance_precision(
|
||||
results: List[Tuple[Document, float]], precision: int = 2
|
||||
) -> List[Tuple[Document, float]]:
|
||||
return list(
|
||||
map(lambda x: (x[0], float(f"{{:.{precision}f}}".format(x[1]))), results)
|
||||
)
|
||||
|
||||
|
||||
class FakeEmbeddingsWithAdaDimension(FakeEmbeddings):
|
||||
"""Fake embeddings functionality for testing."""
|
||||
|
||||
def __init__(self):
|
||||
super(FakeEmbeddingsWithAdaDimension, self).__init__(size=ADA_TOKEN_COUNT)
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Return simple embeddings."""
|
||||
return [
|
||||
[float(1.0)] * (ADA_TOKEN_COUNT - 1) + [float(i)] for i in range(len(texts))
|
||||
]
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Return simple embeddings."""
|
||||
return [float(1.0)] * (ADA_TOKEN_COUNT - 1) + [float(0.0)]
|
||||
|
||||
|
||||
def test_lantern() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
docsearch = Lantern.from_texts(
|
||||
texts=texts,
|
||||
collection_name="test_collection",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
connection_string=CONNECTION_STRING,
|
||||
pre_delete_collection=True,
|
||||
)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo")]
|
||||
|
||||
|
||||
def test_lantern_embeddings() -> None:
|
||||
"""Test end to end construction with embeddings and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
text_embeddings = FakeEmbeddingsWithAdaDimension().embed_documents(texts)
|
||||
text_embedding_pairs = list(zip(texts, text_embeddings))
|
||||
docsearch = Lantern.from_embeddings(
|
||||
text_embeddings=text_embedding_pairs,
|
||||
collection_name="test_collection",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
connection_string=CONNECTION_STRING,
|
||||
pre_delete_collection=True,
|
||||
)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo")]
|
||||
|
||||
|
||||
def test_lantern_embeddings_distance_strategy() -> None:
|
||||
"""Test end to end construction with embeddings and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
text_embeddings = FakeEmbeddingsWithAdaDimension().embed_documents(texts)
|
||||
text_embedding_pairs = list(zip(texts, text_embeddings))
|
||||
docsearch = Lantern.from_embeddings(
|
||||
text_embeddings=text_embedding_pairs,
|
||||
collection_name="test_collection",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
connection_string=CONNECTION_STRING,
|
||||
distance_strategy="hamming",
|
||||
pre_delete_collection=True,
|
||||
)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo")]
|
||||
|
||||
|
||||
def test_lantern_with_metadatas() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
docsearch = Lantern.from_texts(
|
||||
texts=texts,
|
||||
collection_name="test_collection",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
metadatas=metadatas,
|
||||
connection_string=CONNECTION_STRING,
|
||||
pre_delete_collection=True,
|
||||
)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo", metadata={"page": "0"})]
|
||||
|
||||
|
||||
def test_lantern_with_metadatas_with_scores() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
docsearch = Lantern.from_texts(
|
||||
texts=texts,
|
||||
collection_name="test_collection",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
metadatas=metadatas,
|
||||
connection_string=CONNECTION_STRING,
|
||||
pre_delete_collection=True,
|
||||
)
|
||||
output = fix_distance_precision(docsearch.similarity_search_with_score("foo", k=1))
|
||||
assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)]
|
||||
|
||||
|
||||
def test_lantern_with_filter_match() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
docsearch = Lantern.from_texts(
|
||||
texts=texts,
|
||||
collection_name="test_collection_filter",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
metadatas=metadatas,
|
||||
connection_string=CONNECTION_STRING,
|
||||
pre_delete_collection=True,
|
||||
)
|
||||
output = fix_distance_precision(
|
||||
docsearch.similarity_search_with_score("foo", k=1, filter={"page": "0"})
|
||||
)
|
||||
assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)]
|
||||
|
||||
|
||||
def test_lantern_with_filter_distant_match() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
docsearch = Lantern.from_texts(
|
||||
texts=texts,
|
||||
collection_name="test_collection_filter",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
metadatas=metadatas,
|
||||
connection_string=CONNECTION_STRING,
|
||||
pre_delete_collection=True,
|
||||
)
|
||||
output = fix_distance_precision(
|
||||
docsearch.similarity_search_with_score("foo", k=1, filter={"page": "2"})
|
||||
)
|
||||
assert output == [(Document(page_content="baz", metadata={"page": "2"}), 0.0)]
|
||||
|
||||
|
||||
def test_lantern_with_filter_no_match() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
docsearch = Lantern.from_texts(
|
||||
texts=texts,
|
||||
collection_name="test_collection_filter",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
metadatas=metadatas,
|
||||
connection_string=CONNECTION_STRING,
|
||||
pre_delete_collection=True,
|
||||
)
|
||||
output = docsearch.similarity_search_with_score("foo", k=1, filter={"page": "5"})
|
||||
assert output == []
|
||||
|
||||
|
||||
def test_lantern_with_filter_in_set() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
docsearch = Lantern.from_texts(
|
||||
texts=texts,
|
||||
collection_name="test_collection_filter",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
metadatas=metadatas,
|
||||
connection_string=CONNECTION_STRING,
|
||||
pre_delete_collection=True,
|
||||
)
|
||||
output = fix_distance_precision(
|
||||
docsearch.similarity_search_with_score(
|
||||
"foo", k=2, filter={"page": {"IN": ["0", "2"]}}
|
||||
),
|
||||
4,
|
||||
)
|
||||
assert output == [
|
||||
(Document(page_content="foo", metadata={"page": "0"}), 0.0),
|
||||
(Document(page_content="baz", metadata={"page": "2"}), 0.0013),
|
||||
]
|
||||
|
||||
|
||||
def test_lantern_delete_docs() -> None:
|
||||
"""Add and delete documents."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
docsearch = Lantern.from_texts(
|
||||
texts=texts,
|
||||
collection_name="test_collection_filter",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
metadatas=metadatas,
|
||||
ids=["1", "2", "3"],
|
||||
connection_string=CONNECTION_STRING,
|
||||
pre_delete_collection=True,
|
||||
)
|
||||
docsearch.delete(["1", "2", "3"])
|
||||
output = docsearch.similarity_search("foo", k=3)
|
||||
assert output == []
|
||||
|
||||
|
||||
def test_lantern_relevance_score() -> None:
|
||||
"""Test to make sure the relevance score is scaled to 0-1."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
docsearch = Lantern.from_texts(
|
||||
texts=texts,
|
||||
collection_name="test_collection",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
metadatas=metadatas,
|
||||
connection_string=CONNECTION_STRING,
|
||||
pre_delete_collection=True,
|
||||
)
|
||||
|
||||
output = fix_distance_precision(
|
||||
docsearch.similarity_search_with_relevance_scores("foo", k=3), 4
|
||||
)
|
||||
assert output == [
|
||||
(Document(page_content="foo", metadata={"page": "0"}), 1.0),
|
||||
(Document(page_content="bar", metadata={"page": "1"}), 0.9997),
|
||||
(Document(page_content="baz", metadata={"page": "2"}), 0.9987),
|
||||
]
|
||||
|
||||
|
||||
def test_lantern_retriever_search_threshold() -> None:
|
||||
"""Test using retriever for searching with threshold."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
docsearch = Lantern.from_texts(
|
||||
texts=texts,
|
||||
collection_name="test_collection",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
metadatas=metadatas,
|
||||
connection_string=CONNECTION_STRING,
|
||||
pre_delete_collection=True,
|
||||
)
|
||||
|
||||
retriever = docsearch.as_retriever(
|
||||
search_type="similarity_score_threshold",
|
||||
search_kwargs={"k": 3, "score_threshold": 0.999},
|
||||
)
|
||||
output = retriever.get_relevant_documents("summer")
|
||||
assert output == [
|
||||
Document(page_content="foo", metadata={"page": "0"}),
|
||||
Document(page_content="bar", metadata={"page": "1"}),
|
||||
]
|
||||
|
||||
|
||||
def test_lantern_retriever_search_threshold_custom_normalization_fn() -> None:
|
||||
"""Test searching with threshold and custom normalization function"""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
docsearch = Lantern.from_texts(
|
||||
texts=texts,
|
||||
collection_name="test_collection",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
metadatas=metadatas,
|
||||
connection_string=CONNECTION_STRING,
|
||||
relevance_score_fn=lambda d: d * 0,
|
||||
pre_delete_collection=True,
|
||||
)
|
||||
|
||||
retriever = docsearch.as_retriever(
|
||||
search_type="similarity_score_threshold",
|
||||
search_kwargs={"k": 3, "score_threshold": 0.9999},
|
||||
)
|
||||
output = retriever.get_relevant_documents("foo")
|
||||
assert output == [
|
||||
Document(page_content="foo", metadata={"page": "0"}),
|
||||
]
|
||||
|
||||
|
||||
def test_lantern_max_marginal_relevance_search() -> None:
|
||||
"""Test max marginal relevance search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
docsearch = Lantern.from_texts(
|
||||
texts=texts,
|
||||
collection_name="test_collection",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
connection_string=CONNECTION_STRING,
|
||||
pre_delete_collection=True,
|
||||
)
|
||||
output = docsearch.max_marginal_relevance_search("foo", k=1, fetch_k=3)
|
||||
assert output == [Document(page_content="foo")]
|
||||
|
||||
|
||||
def test_lantern_max_marginal_relevance_search_with_score() -> None:
|
||||
"""Test max marginal relevance search with relevance scores."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
docsearch = Lantern.from_texts(
|
||||
texts=texts,
|
||||
collection_name="test_collection",
|
||||
embedding=FakeEmbeddingsWithAdaDimension(),
|
||||
connection_string=CONNECTION_STRING,
|
||||
pre_delete_collection=True,
|
||||
)
|
||||
output = fix_distance_precision(
|
||||
docsearch.max_marginal_relevance_search_with_score("foo", k=1, fetch_k=3)
|
||||
)
|
||||
assert output == [(Document(page_content="foo"), 0.0)]
|
@@ -29,6 +29,7 @@ _EXPECTED = [
|
||||
"FAISS",
|
||||
"Hologres",
|
||||
"LanceDB",
|
||||
"Lantern",
|
||||
"LLMRails",
|
||||
"Marqo",
|
||||
"MatchingEngine",
|
||||
|
Reference in New Issue
Block a user