mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-16 01:37:59 +00:00
langchain_chroma: added document.id support (#27995)
Description: * Added internal `Document.id` support to Chroma VectorStore Dependencies: * https://github.com/langchain-ai/langchain/pull/27968 should be merged first and this PR should be re-based on top of those changes. Tests: * Modified/Added tests for `Document.id` support. All tests are passing. Note: I am not a member of the Chroma team. --------- Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com> Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
parent
15e7353168
commit
eff8a54756
@ -44,10 +44,14 @@ def _results_to_docs_and_scores(results: Any) -> List[Tuple[Document, float]]:
|
||||
return [
|
||||
# TODO: Chroma can do batch querying,
|
||||
# we shouldn't hard code to the 1st result
|
||||
(Document(page_content=result[0], metadata=result[1] or {}), result[2])
|
||||
(
|
||||
Document(page_content=result[0], metadata=result[1] or {}, id=result[2]),
|
||||
result[3],
|
||||
)
|
||||
for result in zip(
|
||||
results["documents"][0],
|
||||
results["metadatas"][0],
|
||||
results["ids"][0],
|
||||
results["distances"][0],
|
||||
)
|
||||
]
|
||||
@ -1185,6 +1189,8 @@ class Chroma(VectorStore):
|
||||
"""
|
||||
texts = [doc.page_content for doc in documents]
|
||||
metadatas = [doc.metadata for doc in documents]
|
||||
if ids is None:
|
||||
ids = [doc.id if doc.id else "" for doc in documents]
|
||||
return cls.from_texts(
|
||||
texts=texts,
|
||||
embedding=embedding,
|
||||
|
@ -46,8 +46,27 @@ def test_chroma() -> None:
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
|
||||
docsearch.delete_collection()
|
||||
assert len(output) == 1
|
||||
assert output[0].page_content == "foo"
|
||||
assert output[0].id is not None
|
||||
|
||||
assert output == [Document(page_content="foo")]
|
||||
|
||||
def test_chroma_with_ids() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
ids = [f"id_{i}" for i in range(len(texts))]
|
||||
docsearch = Chroma.from_texts(
|
||||
collection_name="test_collection",
|
||||
texts=texts,
|
||||
embedding=FakeEmbeddings(),
|
||||
ids=ids,
|
||||
)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
|
||||
docsearch.delete_collection()
|
||||
assert len(output) == 1
|
||||
assert output[0].page_content == "foo"
|
||||
assert output[0].id == "id_0"
|
||||
|
||||
|
||||
async def test_chroma_async() -> None:
|
||||
@ -59,7 +78,27 @@ async def test_chroma_async() -> None:
|
||||
output = await docsearch.asimilarity_search("foo", k=1)
|
||||
|
||||
docsearch.delete_collection()
|
||||
assert output == [Document(page_content="foo")]
|
||||
assert len(output) == 1
|
||||
assert output[0].page_content == "foo"
|
||||
assert output[0].id is not None
|
||||
|
||||
|
||||
async def test_chroma_async_with_ids() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
ids = [f"id_{i}" for i in range(len(texts))]
|
||||
docsearch = Chroma.from_texts(
|
||||
collection_name="test_collection",
|
||||
texts=texts,
|
||||
embedding=FakeEmbeddings(),
|
||||
ids=ids,
|
||||
)
|
||||
output = await docsearch.asimilarity_search("foo", k=1)
|
||||
|
||||
docsearch.delete_collection()
|
||||
assert len(output) == 1
|
||||
assert output[0].page_content == "foo"
|
||||
assert output[0].id == "id_0"
|
||||
|
||||
|
||||
def test_chroma_with_metadatas() -> None:
|
||||
@ -74,22 +113,49 @@ def test_chroma_with_metadatas() -> None:
|
||||
)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
docsearch.delete_collection()
|
||||
assert output == [Document(page_content="foo", metadata={"page": "0"})]
|
||||
assert len(output) == 1
|
||||
assert output[0].page_content == "foo"
|
||||
assert output[0].metadata == {"page": "0"}
|
||||
assert output[0].id is not None
|
||||
|
||||
|
||||
def test_chroma_with_metadatas_with_scores() -> None:
|
||||
"""Test end to end construction and scored search."""
|
||||
def test_chroma_with_metadatas_and_ids() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
ids = [f"id_{i}" for i in range(len(texts))]
|
||||
docsearch = Chroma.from_texts(
|
||||
collection_name="test_collection",
|
||||
texts=texts,
|
||||
embedding=FakeEmbeddings(),
|
||||
metadatas=metadatas,
|
||||
ids=ids,
|
||||
)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
docsearch.delete_collection()
|
||||
assert len(output) == 1
|
||||
assert output[0].page_content == "foo"
|
||||
assert output[0].metadata == {"page": "0"}
|
||||
assert output[0].id == "id_0"
|
||||
|
||||
|
||||
def test_chroma_with_metadatas_with_scores_and_ids() -> None:
|
||||
"""Test end to end construction and scored search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
ids = [f"id_{i}" for i in range(len(texts))]
|
||||
docsearch = Chroma.from_texts(
|
||||
collection_name="test_collection",
|
||||
texts=texts,
|
||||
embedding=FakeEmbeddings(),
|
||||
metadatas=metadatas,
|
||||
ids=ids,
|
||||
)
|
||||
output = docsearch.similarity_search_with_score("foo", k=1)
|
||||
docsearch.delete_collection()
|
||||
assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)]
|
||||
assert output == [
|
||||
(Document(page_content="foo", metadata={"page": "0"}, id="id_0"), 0.0)
|
||||
]
|
||||
|
||||
|
||||
def test_chroma_with_metadatas_with_vectors() -> None:
|
||||
@ -114,6 +180,7 @@ def test_chroma_with_metadatas_with_scores_using_vector() -> None:
|
||||
"""Test end to end construction and scored search, using embedding vector."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
ids = [f"id_{i}" for i in range(len(texts))]
|
||||
embeddings = FakeEmbeddings()
|
||||
|
||||
docsearch = Chroma.from_texts(
|
||||
@ -121,41 +188,52 @@ def test_chroma_with_metadatas_with_scores_using_vector() -> None:
|
||||
texts=texts,
|
||||
embedding=embeddings,
|
||||
metadatas=metadatas,
|
||||
ids=ids,
|
||||
)
|
||||
embedded_query = embeddings.embed_query("foo")
|
||||
output = docsearch.similarity_search_by_vector_with_relevance_scores(
|
||||
embedding=embedded_query, k=1
|
||||
)
|
||||
docsearch.delete_collection()
|
||||
assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)]
|
||||
assert output == [
|
||||
(Document(page_content="foo", metadata={"page": "0"}, id="id_0"), 0.0)
|
||||
]
|
||||
|
||||
|
||||
def test_chroma_search_filter() -> None:
|
||||
"""Test end to end construction and search with metadata filtering."""
|
||||
texts = ["far", "bar", "baz"]
|
||||
metadatas = [{"first_letter": "{}".format(text[0])} for text in texts]
|
||||
ids = [f"id_{i}" for i in range(len(texts))]
|
||||
docsearch = Chroma.from_texts(
|
||||
collection_name="test_collection",
|
||||
texts=texts,
|
||||
embedding=FakeEmbeddings(),
|
||||
metadatas=metadatas,
|
||||
ids=ids,
|
||||
)
|
||||
output1 = docsearch.similarity_search("far", k=1, filter={"first_letter": "f"})
|
||||
output2 = docsearch.similarity_search("far", k=1, filter={"first_letter": "b"})
|
||||
docsearch.delete_collection()
|
||||
assert output1 == [Document(page_content="far", metadata={"first_letter": "f"})]
|
||||
assert output2 == [Document(page_content="bar", metadata={"first_letter": "b"})]
|
||||
assert output1 == [
|
||||
Document(page_content="far", metadata={"first_letter": "f"}, id="id_0")
|
||||
]
|
||||
assert output2 == [
|
||||
Document(page_content="bar", metadata={"first_letter": "b"}, id="id_1")
|
||||
]
|
||||
|
||||
|
||||
def test_chroma_search_filter_with_scores() -> None:
|
||||
"""Test end to end construction and scored search with metadata filtering."""
|
||||
texts = ["far", "bar", "baz"]
|
||||
metadatas = [{"first_letter": "{}".format(text[0])} for text in texts]
|
||||
ids = [f"id_{i}" for i in range(len(texts))]
|
||||
docsearch = Chroma.from_texts(
|
||||
collection_name="test_collection",
|
||||
texts=texts,
|
||||
embedding=FakeEmbeddings(),
|
||||
metadatas=metadatas,
|
||||
ids=ids,
|
||||
)
|
||||
output1 = docsearch.similarity_search_with_score(
|
||||
"far", k=1, filter={"first_letter": "f"}
|
||||
@ -165,10 +243,10 @@ def test_chroma_search_filter_with_scores() -> None:
|
||||
)
|
||||
docsearch.delete_collection()
|
||||
assert output1 == [
|
||||
(Document(page_content="far", metadata={"first_letter": "f"}), 0.0)
|
||||
(Document(page_content="far", metadata={"first_letter": "f"}, id="id_0"), 0.0)
|
||||
]
|
||||
assert output2 == [
|
||||
(Document(page_content="bar", metadata={"first_letter": "b"}), 1.0)
|
||||
(Document(page_content="bar", metadata={"first_letter": "b"}, id="id_1"), 1.0)
|
||||
]
|
||||
|
||||
|
||||
@ -177,15 +255,18 @@ def test_chroma_with_persistence() -> None:
|
||||
chroma_persist_dir = "./tests/persist_dir"
|
||||
collection_name = "test_collection"
|
||||
texts = ["foo", "bar", "baz"]
|
||||
ids = [f"id_{i}" for i in range(len(texts))]
|
||||
|
||||
docsearch = Chroma.from_texts(
|
||||
collection_name=collection_name,
|
||||
texts=texts,
|
||||
embedding=FakeEmbeddings(),
|
||||
persist_directory=chroma_persist_dir,
|
||||
ids=ids,
|
||||
)
|
||||
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo")]
|
||||
assert output == [Document(page_content="foo", id="id_0")]
|
||||
|
||||
# Get a new VectorStore from the persisted directory
|
||||
docsearch = Chroma(
|
||||
@ -194,6 +275,7 @@ def test_chroma_with_persistence() -> None:
|
||||
persist_directory=chroma_persist_dir,
|
||||
)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo", id="id_0")]
|
||||
|
||||
# Clean up
|
||||
docsearch.delete_collection()
|
||||
@ -211,7 +293,9 @@ def test_chroma_mmr() -> None:
|
||||
)
|
||||
output = docsearch.max_marginal_relevance_search("foo", k=1)
|
||||
docsearch.delete_collection()
|
||||
assert output == [Document(page_content="foo")]
|
||||
assert len(output) == 1
|
||||
assert output[0].page_content == "foo"
|
||||
assert output[0].id is not None
|
||||
|
||||
|
||||
def test_chroma_mmr_by_vector() -> None:
|
||||
@ -224,7 +308,9 @@ def test_chroma_mmr_by_vector() -> None:
|
||||
embedded_query = embeddings.embed_query("foo")
|
||||
output = docsearch.max_marginal_relevance_search_by_vector(embedded_query, k=1)
|
||||
docsearch.delete_collection()
|
||||
assert output == [Document(page_content="foo")]
|
||||
assert len(output) == 1
|
||||
assert output[0].page_content == "foo"
|
||||
assert output[0].id is not None
|
||||
|
||||
|
||||
def test_chroma_with_include_parameter() -> None:
|
||||
@ -241,7 +327,10 @@ def test_chroma_with_include_parameter() -> None:
|
||||
|
||||
|
||||
def test_chroma_update_document() -> None:
|
||||
"""Test the update_document function in the Chroma class."""
|
||||
"""Test the update_document function in the Chroma class.
|
||||
|
||||
Uses an external document id.
|
||||
"""
|
||||
# Make a consistent embedding
|
||||
embedding = ConsistentFakeEmbeddings()
|
||||
|
||||
@ -283,7 +372,66 @@ def test_chroma_update_document() -> None:
|
||||
docsearch.delete_collection()
|
||||
|
||||
# Assert that the updated document is returned by the search
|
||||
assert output == [Document(page_content=updated_content, metadata={"page": "0"})]
|
||||
assert output == [
|
||||
Document(page_content=updated_content, metadata={"page": "0"}, id=document_id)
|
||||
]
|
||||
|
||||
assert list(new_embedding) == list(embedding.embed_documents([updated_content])[0])
|
||||
assert list(new_embedding) != list(old_embedding)
|
||||
|
||||
|
||||
def test_chroma_update_document_with_id() -> None:
|
||||
"""Test the update_document function in the Chroma class.
|
||||
|
||||
Uses an internal document id.
|
||||
"""
|
||||
# Make a consistent embedding
|
||||
embedding = ConsistentFakeEmbeddings()
|
||||
|
||||
# Initial document content and id
|
||||
initial_content = "foo"
|
||||
document_id = "doc1"
|
||||
|
||||
# Create an instance of Document with initial content and metadata
|
||||
original_doc = Document(
|
||||
page_content=initial_content, metadata={"page": "0"}, id=document_id
|
||||
)
|
||||
|
||||
# Initialize a Chroma instance with the original document
|
||||
docsearch = Chroma.from_documents(
|
||||
collection_name="test_collection",
|
||||
documents=[original_doc],
|
||||
embedding=embedding,
|
||||
)
|
||||
old_embedding = docsearch._collection.peek()["embeddings"][ # type: ignore
|
||||
docsearch._collection.peek()["ids"].index(document_id)
|
||||
]
|
||||
|
||||
# Define updated content for the document
|
||||
updated_content = "updated foo"
|
||||
|
||||
# Create a new Document instance with the updated content and the same id
|
||||
updated_doc = Document(
|
||||
page_content=updated_content, metadata={"page": "0"}, id=document_id
|
||||
)
|
||||
|
||||
# Update the document in the Chroma instance
|
||||
docsearch.update_document(document_id=document_id, document=updated_doc)
|
||||
|
||||
# Perform a similarity search with the updated content
|
||||
output = docsearch.similarity_search(updated_content, k=1)
|
||||
|
||||
# Assert that the new embedding is correct
|
||||
new_embedding = docsearch._collection.peek()["embeddings"][ # type: ignore
|
||||
docsearch._collection.peek()["ids"].index(document_id)
|
||||
]
|
||||
|
||||
docsearch.delete_collection()
|
||||
|
||||
# Assert that the updated document is returned by the search
|
||||
assert output == [
|
||||
Document(page_content=updated_content, metadata={"page": "0"}, id=document_id)
|
||||
]
|
||||
|
||||
assert list(new_embedding) == list(embedding.embed_documents([updated_content])[0])
|
||||
assert list(new_embedding) != list(old_embedding)
|
||||
@ -294,20 +442,22 @@ def test_chroma_with_relevance_score_custom_normalization_fn() -> None:
|
||||
"""Test searching with relevance score and custom normalization function."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
ids = [f"id_{i}" for i in range(len(texts))]
|
||||
docsearch = Chroma.from_texts(
|
||||
collection_name="test1_collection",
|
||||
texts=texts,
|
||||
embedding=FakeEmbeddings(),
|
||||
metadatas=metadatas,
|
||||
ids=ids,
|
||||
relevance_score_fn=lambda d: d * 0,
|
||||
collection_metadata={"hnsw:space": "l2"},
|
||||
)
|
||||
output = docsearch.similarity_search_with_relevance_scores("foo", k=3)
|
||||
docsearch.delete_collection()
|
||||
assert output == [
|
||||
(Document(page_content="foo", metadata={"page": "0"}), 0.0),
|
||||
(Document(page_content="bar", metadata={"page": "1"}), 0.0),
|
||||
(Document(page_content="baz", metadata={"page": "2"}), 0.0),
|
||||
(Document(page_content="foo", metadata={"page": "0"}, id="id_0"), 0.0),
|
||||
(Document(page_content="bar", metadata={"page": "1"}, id="id_1"), 0.0),
|
||||
(Document(page_content="baz", metadata={"page": "2"}, id="id_2"), 0.0),
|
||||
]
|
||||
|
||||
|
||||
@ -332,11 +482,11 @@ def test_chroma_add_documents_no_metadata() -> None:
|
||||
def test_chroma_add_documents_mixed_metadata() -> None:
|
||||
db = Chroma(embedding_function=FakeEmbeddings())
|
||||
docs = [
|
||||
Document(page_content="foo"),
|
||||
Document(page_content="bar", metadata={"baz": 1}),
|
||||
Document(page_content="foo", id="0"),
|
||||
Document(page_content="bar", metadata={"baz": 1}, id="1"),
|
||||
]
|
||||
ids = ["0", "1"]
|
||||
actual_ids = db.add_documents(docs, ids=ids)
|
||||
actual_ids = db.add_documents(docs)
|
||||
search = db.similarity_search("foo bar")
|
||||
db.delete_collection()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user