mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-24 15:43:54 +00:00
milvus: docstring (#23151)
Added missed docstrings. Format docstrings to the consistent format (used in the API Reference) --------- Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com> Co-authored-by: isaac hershenson <ihershenson@hmc.edu> Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
parent
474b88326f
commit
f0a7581b50
@ -11,8 +11,9 @@ from langchain_milvus.utils.sparse import BaseSparseEmbedding
|
||||
|
||||
|
||||
class MilvusCollectionHybridSearchRetriever(BaseRetriever):
|
||||
"""This is a hybrid search retriever
|
||||
"""Hybrid search retriever
|
||||
that uses Milvus Collection to retrieve documents based on multiple fields.
|
||||
|
||||
For more information, please refer to:
|
||||
https://milvus.io/docs/release_notes.md#Multi-Embedding---Hybrid-Search
|
||||
"""
|
||||
|
@ -7,13 +7,13 @@ from langchain_core.retrievers import BaseRetriever
|
||||
|
||||
|
||||
class ZillizCloudPipelineRetriever(BaseRetriever):
|
||||
"""`Zilliz Cloud Pipeline` retriever
|
||||
"""`Zilliz Cloud Pipeline` retriever.
|
||||
|
||||
Args:
|
||||
pipeline_ids (dict): A dictionary of pipeline ids.
|
||||
Parameters:
|
||||
pipeline_ids: A dictionary of pipeline ids.
|
||||
Valid keys: "ingestion", "search", "deletion".
|
||||
token (str): Zilliz Cloud's token. Defaults to "".
|
||||
cloud_region (str='gcp-us-west1'): The region of Zilliz Cloud's cluster.
|
||||
token: Zilliz Cloud's token. Defaults to "".
|
||||
cloud_region: The region of Zilliz Cloud's cluster.
|
||||
Defaults to 'gcp-us-west1'.
|
||||
"""
|
||||
|
||||
@ -35,14 +35,14 @@ class ZillizCloudPipelineRetriever(BaseRetriever):
|
||||
Get documents relevant to a query.
|
||||
|
||||
Args:
|
||||
query (str): String to find relevant documents for
|
||||
top_k (int=10): The number of results. Defaults to 10.
|
||||
offset (int=0): The number of records to skip in the search result.
|
||||
query: String to find relevant documents for
|
||||
top_k: The number of results. Defaults to 10.
|
||||
offset: The number of records to skip in the search result.
|
||||
Defaults to 0.
|
||||
output_fields (list=[]): The extra fields to present in output.
|
||||
filter (str=""): The Milvus expression to filter search results.
|
||||
output_fields: The extra fields to present in output.
|
||||
filter: The Milvus expression to filter search results.
|
||||
Defaults to "".
|
||||
run_manager (CallBackManagerForRetrieverRun): The callbacks handler to use.
|
||||
run_manager: The callbacks handler to use.
|
||||
|
||||
Returns:
|
||||
List of relevant documents
|
||||
@ -100,8 +100,8 @@ class ZillizCloudPipelineRetriever(BaseRetriever):
|
||||
Only supported by a text ingestion pipeline in Zilliz Cloud.
|
||||
|
||||
Args:
|
||||
texts (List[str]): A list of text strings.
|
||||
metadata (Dict[str, Any]): A key-value dictionary of metadata will
|
||||
texts: A list of text strings.
|
||||
metadata: A key-value dictionary of metadata will
|
||||
be inserted as preserved fields required by ingestion pipeline.
|
||||
Defaults to None.
|
||||
"""
|
||||
@ -144,7 +144,7 @@ class ZillizCloudPipelineRetriever(BaseRetriever):
|
||||
|
||||
Args:
|
||||
doc_url: A document url.
|
||||
metadata (Dict[str, Any]): A key-value dictionary of metadata will
|
||||
metadata: A key-value dictionary of metadata will
|
||||
be inserted as preserved fields required by ingestion pipeline.
|
||||
Defaults to None.
|
||||
"""
|
||||
|
@ -6,6 +6,7 @@ from scipy.sparse import csr_array # type: ignore
|
||||
|
||||
class BaseSparseEmbedding(ABC):
|
||||
"""Interface for Sparse embedding models.
|
||||
|
||||
You can inherit from it and implement your custom sparse embedding model.
|
||||
"""
|
||||
|
||||
@ -19,8 +20,8 @@ class BaseSparseEmbedding(ABC):
|
||||
|
||||
|
||||
class BM25SparseEmbedding(BaseSparseEmbedding):
|
||||
"""This is a class that inherits BaseSparseEmbedding
|
||||
and implements a sparse vector embedding model based on BM25.
|
||||
"""Sparse embedding model based on BM25.
|
||||
|
||||
This class uses the BM25 model in Milvus model to implement sparse vector embedding.
|
||||
This model requires pymilvus[model] to be installed.
|
||||
`pip install pymilvus[model]`
|
||||
|
@ -57,7 +57,17 @@ def maximal_marginal_relevance(
|
||||
lambda_mult: float = 0.5,
|
||||
k: int = 4,
|
||||
) -> List[int]:
|
||||
"""Calculate maximal marginal relevance."""
|
||||
"""Calculate maximal marginal relevance.
|
||||
|
||||
Args:
|
||||
query_embedding: The query embedding.
|
||||
embedding_list: The list of embeddings.
|
||||
lambda_mult: The lambda multiplier. Defaults to 0.5.
|
||||
k: The number of results to return. Defaults to 4.
|
||||
|
||||
Returns:
|
||||
List[int]: The list of indices.
|
||||
"""
|
||||
if min(k, len(embedding_list)) <= 0:
|
||||
return []
|
||||
if query_embedding.ndim == 1:
|
||||
@ -99,7 +109,7 @@ class Milvus(VectorStore):
|
||||
|
||||
IF USING L2/IP metric, IT IS HIGHLY SUGGESTED TO NORMALIZE YOUR DATA.
|
||||
|
||||
Args:
|
||||
Parameters:
|
||||
embedding_function (Embeddings): Function used to embed the text.
|
||||
collection_name (str): Which Milvus collection to use. Defaults to
|
||||
"LangChainCollection".
|
||||
|
Loading…
Reference in New Issue
Block a user