mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-03 03:59:42 +00:00
Update SQL templates (#12464)
This commit is contained in:
@@ -27,10 +27,3 @@ You can select other files and specify their download path (browse [here](https:
|
||||
This template includes an example DB of 2023 NBA rosters.
|
||||
|
||||
You can see instructions to build this DB [here](https://github.com/facebookresearch/llama-recipes/blob/main/demo_apps/StructuredLlama.ipynb).
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
# from inside your LangServe instance
|
||||
poe add sql/llama2-ollama
|
||||
```
|
||||
|
54
templates/sql-llamacpp/sql-llamacpp.ipynb
Normal file
54
templates/sql-llamacpp/sql-llamacpp.ipynb
Normal file
@@ -0,0 +1,54 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a0314df0-da99-4086-a96f-b14df05b3362",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Run Template\n",
|
||||
"\n",
|
||||
"In `server.py`, set -\n",
|
||||
"```\n",
|
||||
"add_routes(app, chain, path=\"/sql_llamacpp\")\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"This template includes an example DB of 2023 NBA rosters.\n",
|
||||
"\n",
|
||||
"We can ask questions related to NBA players. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ff5869c6-2065-48f3-bb43-52a515968276",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langserve.client import RemoteRunnable\n",
|
||||
"sql_app = RemoteRunnable('http://0.0.0.0:8001/sql_llamacpp')\n",
|
||||
"sql_app.invoke({\"question\": \"What team is Klay Thompson on?\"})"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.16"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@@ -1,3 +1,3 @@
|
||||
from llamacpp.chain import chain
|
||||
from sql_llamacpp.chain import chain
|
||||
|
||||
__all__ = ["chain"]
|
@@ -6,6 +6,7 @@ import requests
|
||||
from langchain.llms import LlamaCpp
|
||||
from langchain.memory import ConversationBufferMemory
|
||||
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnableLambda, RunnablePassthrough
|
||||
from langchain.utilities import SQLDatabase
|
||||
@@ -113,9 +114,12 @@ prompt_response = ChatPromptTemplate.from_messages(
|
||||
("human", template),
|
||||
]
|
||||
)
|
||||
# Supply the input types to the prompt
|
||||
class InputType(BaseModel):
|
||||
question: str
|
||||
|
||||
chain = (
|
||||
RunnablePassthrough.assign(query=sql_response_memory)
|
||||
RunnablePassthrough.assign(query=sql_response_memory).with_types(input_type=InputType)
|
||||
| RunnablePassthrough.assign(
|
||||
schema=get_schema,
|
||||
response=lambda x: db.run(x["query"]),
|
||||
|
Reference in New Issue
Block a user