mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-04 20:46:45 +00:00
Update SQL templates (#12464)
This commit is contained in:
@@ -15,11 +15,4 @@ Also follow instructions to download your LLM of interest:
|
||||
|
||||
This template includes an example DB of 2023 NBA rosters.
|
||||
|
||||
You can see instructions to build this DB [here](https://github.com/facebookresearch/llama-recipes/blob/main/demo_apps/StructuredLlama.ipynb).
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
# from inside your LangServe instance
|
||||
poe add sql-ollama
|
||||
```
|
||||
You can see instructions to build this DB [here](https://github.com/facebookresearch/llama-recipes/blob/main/demo_apps/StructuredLlama.ipynb).
|
54
templates/sql-ollama/sql-ollama.ipynb
Normal file
54
templates/sql-ollama/sql-ollama.ipynb
Normal file
@@ -0,0 +1,54 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d55f5fd9-21eb-433d-9259-0a588d9197c0",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Run Template\n",
|
||||
"\n",
|
||||
"In `server.py`, set -\n",
|
||||
"```\n",
|
||||
"add_routes(app, chain, path=\"/sql_ollama\")\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"This template includes an example DB of 2023 NBA rosters.\n",
|
||||
"\n",
|
||||
"We can ask questions related to NBA players. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "50c27e82-92d8-4fa1-8bc4-b6544e59773d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langserve.client import RemoteRunnable\n",
|
||||
"sql_app = RemoteRunnable('http://0.0.0.0:8001/sql_ollama')\n",
|
||||
"sql_app.invoke({\"question\": \"What team is Klay Thompson on?\"})"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.16"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@@ -3,6 +3,7 @@ from pathlib import Path
|
||||
from langchain.chat_models import ChatOllama
|
||||
from langchain.memory import ConversationBufferMemory
|
||||
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnableLambda, RunnablePassthrough
|
||||
from langchain.utilities import SQLDatabase
|
||||
@@ -82,8 +83,12 @@ prompt_response = ChatPromptTemplate.from_messages(
|
||||
]
|
||||
)
|
||||
|
||||
# Supply the input types to the prompt
|
||||
class InputType(BaseModel):
|
||||
question: str
|
||||
|
||||
chain = (
|
||||
RunnablePassthrough.assign(query=sql_response_memory)
|
||||
RunnablePassthrough.assign(query=sql_response_memory).with_types(input_type=InputType)
|
||||
| RunnablePassthrough.assign(
|
||||
schema=get_schema,
|
||||
response=lambda x: db.run(x["query"]),
|
||||
|
Reference in New Issue
Block a user