mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-10 13:27:36 +00:00
community: Fix the failure of ChatSparkLLM after upgrading to Pydantic V2 (#27418)
**Description:** The test_sparkllm.py can reproduce this issue. https://github.com/langchain-ai/langchain/blob/master/libs/community/tests/integration_tests/chat_models/test_sparkllm.py#L66 ``` Testing started at 18:27 ... Launching pytest with arguments test_sparkllm.py::test_chat_spark_llm --no-header --no-summary -q in /Users/zhanglei/Work/github/langchain/libs/community/tests/integration_tests/chat_models ============================= test session starts ============================== collecting ... collected 1 item test_sparkllm.py::test_chat_spark_llm ============================== 1 failed in 0.45s =============================== FAILED [100%] tests/integration_tests/chat_models/test_sparkllm.py:65 (test_chat_spark_llm) def test_chat_spark_llm() -> None: > chat = ChatSparkLLM( spark_app_id="your spark_app_id", spark_api_key="your spark_api_key", spark_api_secret="your spark_api_secret", ) # type: ignore[call-arg] test_sparkllm.py:67: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ../../../../core/langchain_core/load/serializable.py:111: in __init__ super().__init__(*args, **kwargs) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ cls = <class 'langchain_community.chat_models.sparkllm.ChatSparkLLM'> values = {'spark_api_key': 'your spark_api_key', 'spark_api_secret': 'your spark_api_secret', 'spark_api_url': 'wss://spark-api.xf-yun.com/v3.5/chat', 'spark_app_id': 'your spark_app_id', ...} @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: values["spark_app_id"] = get_from_dict_or_env( values, ["spark_app_id", "app_id"], "IFLYTEK_SPARK_APP_ID", ) values["spark_api_key"] = get_from_dict_or_env( values, ["spark_api_key", "api_key"], "IFLYTEK_SPARK_API_KEY", ) values["spark_api_secret"] = get_from_dict_or_env( values, ["spark_api_secret", "api_secret"], "IFLYTEK_SPARK_API_SECRET", ) values["spark_api_url"] = get_from_dict_or_env( values, "spark_api_url", "IFLYTEK_SPARK_API_URL", SPARK_API_URL, ) values["spark_llm_domain"] = get_from_dict_or_env( values, "spark_llm_domain", "IFLYTEK_SPARK_LLM_DOMAIN", SPARK_LLM_DOMAIN, ) # put extra params into model_kwargs default_values = { name: field.default for name, field in get_fields(cls).items() if field.default is not None } > values["model_kwargs"]["temperature"] = default_values.get("temperature") E KeyError: 'model_kwargs' ../../../langchain_community/chat_models/sparkllm.py:368: KeyError ``` I found that when upgrading to Pydantic v2, @root_validator was changed to @model_validator. When a class declares multiple @model_validator(model=before), the execution order in V1 and V2 is opposite. This is the reason for ChatSparkLLM's failure. The correct execution order is to execute build_extra first. https://github.com/langchain-ai/langchain/blob/langchain%3D%3D0.2.16/libs/community/langchain_community/chat_models/sparkllm.py#L302 And then execute validate_environment. https://github.com/langchain-ai/langchain/blob/langchain%3D%3D0.2.16/libs/community/langchain_community/chat_models/sparkllm.py#L329 The Pydantic community also discusses it, but there hasn't been a conclusion yet. https://github.com/pydantic/pydantic/discussions/7434 **Issus:** #27416 **Twitter handle:** coolbeevip --------- Co-authored-by: vbarda <vadym@langchain.dev>
This commit is contained in:
parent
8f151223ad
commit
f203229b51
@ -95,3 +95,4 @@ xmltodict>=0.13.0,<0.14
|
||||
nanopq==0.2.1
|
||||
mlflow[genai]>=2.14.0
|
||||
databricks-sdk>=0.30.0
|
||||
websocket>=0.2.1,<1
|
@ -300,34 +300,6 @@ class ChatSparkLLM(BaseChatModel):
|
||||
populate_by_name=True,
|
||||
)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def build_extra(cls, values: Dict[str, Any]) -> Any:
|
||||
"""Build extra kwargs from additional params that were passed in."""
|
||||
all_required_field_names = get_pydantic_field_names(cls)
|
||||
extra = values.get("model_kwargs", {})
|
||||
for field_name in list(values):
|
||||
if field_name in extra:
|
||||
raise ValueError(f"Found {field_name} supplied twice.")
|
||||
if field_name not in all_required_field_names:
|
||||
logger.warning(
|
||||
f"""WARNING! {field_name} is not default parameter.
|
||||
{field_name} was transferred to model_kwargs.
|
||||
Please confirm that {field_name} is what you intended."""
|
||||
)
|
||||
extra[field_name] = values.pop(field_name)
|
||||
|
||||
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
|
||||
if invalid_model_kwargs:
|
||||
raise ValueError(
|
||||
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
|
||||
f"Instead they were passed in as part of `model_kwargs` parameter."
|
||||
)
|
||||
|
||||
values["model_kwargs"] = extra
|
||||
|
||||
return values
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def validate_environment(cls, values: Dict) -> Any:
|
||||
@ -378,6 +350,38 @@ class ChatSparkLLM(BaseChatModel):
|
||||
)
|
||||
return values
|
||||
|
||||
# When using Pydantic V2
|
||||
# The execution order of multiple @model_validator decorators is opposite to
|
||||
# their declaration order. https://github.com/pydantic/pydantic/discussions/7434
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def build_extra(cls, values: Dict[str, Any]) -> Any:
|
||||
"""Build extra kwargs from additional params that were passed in."""
|
||||
all_required_field_names = get_pydantic_field_names(cls)
|
||||
extra = values.get("model_kwargs", {})
|
||||
for field_name in list(values):
|
||||
if field_name in extra:
|
||||
raise ValueError(f"Found {field_name} supplied twice.")
|
||||
if field_name not in all_required_field_names:
|
||||
logger.warning(
|
||||
f"""WARNING! {field_name} is not default parameter.
|
||||
{field_name} was transferred to model_kwargs.
|
||||
Please confirm that {field_name} is what you intended."""
|
||||
)
|
||||
extra[field_name] = values.pop(field_name)
|
||||
|
||||
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
|
||||
if invalid_model_kwargs:
|
||||
raise ValueError(
|
||||
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
|
||||
f"Instead they were passed in as part of `model_kwargs` parameter."
|
||||
)
|
||||
|
||||
values["model_kwargs"] = extra
|
||||
|
||||
return values
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
|
@ -1,3 +1,4 @@
|
||||
import pytest
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
HumanMessage,
|
||||
@ -8,6 +9,7 @@ from langchain_core.output_parsers.openai_tools import (
|
||||
)
|
||||
|
||||
from langchain_community.chat_models.sparkllm import (
|
||||
ChatSparkLLM,
|
||||
convert_dict_to_message,
|
||||
convert_message_to_dict,
|
||||
)
|
||||
@ -83,3 +85,25 @@ def test__convert_message_to_dict_system() -> None:
|
||||
result = convert_message_to_dict(message)
|
||||
expected_output = {"role": "system", "content": "foo"}
|
||||
assert result == expected_output
|
||||
|
||||
|
||||
@pytest.mark.requires("websocket")
|
||||
def test__chat_spark_llm_initialization() -> None:
|
||||
chat = ChatSparkLLM(
|
||||
app_id="IFLYTEK_SPARK_APP_ID",
|
||||
api_key="IFLYTEK_SPARK_API_KEY",
|
||||
api_secret="IFLYTEK_SPARK_API_SECRET",
|
||||
api_url="IFLYTEK_SPARK_API_URL",
|
||||
model="IFLYTEK_SPARK_LLM_DOMAIN",
|
||||
timeout=40,
|
||||
temperature=0.1,
|
||||
top_k=3,
|
||||
)
|
||||
assert chat.spark_app_id == "IFLYTEK_SPARK_APP_ID"
|
||||
assert chat.spark_api_key == "IFLYTEK_SPARK_API_KEY"
|
||||
assert chat.spark_api_secret == "IFLYTEK_SPARK_API_SECRET"
|
||||
assert chat.spark_api_url == "IFLYTEK_SPARK_API_URL"
|
||||
assert chat.spark_llm_domain == "IFLYTEK_SPARK_LLM_DOMAIN"
|
||||
assert chat.request_timeout == 40
|
||||
assert chat.temperature == 0.1
|
||||
assert chat.top_k == 3
|
||||
|
Loading…
Reference in New Issue
Block a user