diff --git a/libs/core/langchain_core/_api/deprecation.py b/libs/core/langchain_core/_api/deprecation.py index a92dd1457da..f6e09a78726 100644 --- a/libs/core/langchain_core/_api/deprecation.py +++ b/libs/core/langchain_core/_api/deprecation.py @@ -466,8 +466,7 @@ def warn_deprecated( f"{removal}" ) raise NotImplementedError(msg) - else: - removal = f"in {removal}" + removal = f"in {removal}" if not message: message = "" diff --git a/libs/core/langchain_core/agents.py b/libs/core/langchain_core/agents.py index 5365bc67571..a142db3940c 100644 --- a/libs/core/langchain_core/agents.py +++ b/libs/core/langchain_core/agents.py @@ -185,8 +185,7 @@ def _convert_agent_action_to_messages( """ if isinstance(agent_action, AgentActionMessageLog): return agent_action.message_log - else: - return [AIMessage(content=agent_action.log)] + return [AIMessage(content=agent_action.log)] def _convert_agent_observation_to_messages( @@ -205,14 +204,13 @@ def _convert_agent_observation_to_messages( """ if isinstance(agent_action, AgentActionMessageLog): return [_create_function_message(agent_action, observation)] - else: - content = observation - if not isinstance(observation, str): - try: - content = json.dumps(observation, ensure_ascii=False) - except Exception: - content = str(observation) - return [HumanMessage(content=content)] + content = observation + if not isinstance(observation, str): + try: + content = json.dumps(observation, ensure_ascii=False) + except Exception: + content = str(observation) + return [HumanMessage(content=content)] def _create_function_message( diff --git a/libs/core/langchain_core/beta/runnables/context.py b/libs/core/langchain_core/beta/runnables/context.py index d6d88ab20ba..3aa76f34ed9 100644 --- a/libs/core/langchain_core/beta/runnables/context.py +++ b/libs/core/langchain_core/beta/runnables/context.py @@ -59,11 +59,10 @@ def _key_from_id(id_: str) -> str: wout_prefix = id_.split(CONTEXT_CONFIG_PREFIX, maxsplit=1)[1] if wout_prefix.endswith(CONTEXT_CONFIG_SUFFIX_GET): return wout_prefix[: -len(CONTEXT_CONFIG_SUFFIX_GET)] - elif wout_prefix.endswith(CONTEXT_CONFIG_SUFFIX_SET): + if wout_prefix.endswith(CONTEXT_CONFIG_SUFFIX_SET): return wout_prefix[: -len(CONTEXT_CONFIG_SUFFIX_SET)] - else: - msg = f"Invalid context config id {id_}" - raise ValueError(msg) + msg = f"Invalid context config id {id_}" + raise ValueError(msg) def _config_with_context( @@ -197,8 +196,7 @@ class ContextGet(RunnableSerializable): configurable = config.get("configurable", {}) if isinstance(self.key, list): return {key: configurable[id_]() for key, id_ in zip(self.key, self.ids)} - else: - return configurable[self.ids[0]]() + return configurable[self.ids[0]]() @override async def ainvoke( @@ -209,8 +207,7 @@ class ContextGet(RunnableSerializable): if isinstance(self.key, list): values = await asyncio.gather(*(configurable[id_]() for id_ in self.ids)) return dict(zip(self.key, values)) - else: - return await configurable[self.ids[0]]() + return await configurable[self.ids[0]]() SetValue = Union[ @@ -447,5 +444,4 @@ class PrefixContext: def _print_keys(keys: Union[str, Sequence[str]]) -> str: if isinstance(keys, str): return f"'{keys}'" - else: - return ", ".join(f"'{k}'" for k in keys) + return ", ".join(f"'{k}'" for k in keys) diff --git a/libs/core/langchain_core/document_loaders/langsmith.py b/libs/core/langchain_core/document_loaders/langsmith.py index 0705c780bd5..259260f718b 100644 --- a/libs/core/langchain_core/document_loaders/langsmith.py +++ b/libs/core/langchain_core/document_loaders/langsmith.py @@ -128,8 +128,7 @@ class LangSmithLoader(BaseLoader): def _stringify(x: Union[str, dict]) -> str: if isinstance(x, str): return x - else: - try: - return json.dumps(x, indent=2) - except Exception: - return str(x) + try: + return json.dumps(x, indent=2) + except Exception: + return str(x) diff --git a/libs/core/langchain_core/documents/base.py b/libs/core/langchain_core/documents/base.py index 8985d66c6c1..fba997f4959 100644 --- a/libs/core/langchain_core/documents/base.py +++ b/libs/core/langchain_core/documents/base.py @@ -54,8 +54,7 @@ class BaseMedia(Serializable): """ if id_value is not None: return str(id_value) - else: - return id_value + return id_value class Blob(BaseMedia): @@ -159,25 +158,23 @@ class Blob(BaseMedia): """Read data as a string.""" if self.data is None and self.path: return Path(self.path).read_text(encoding=self.encoding) - elif isinstance(self.data, bytes): + if isinstance(self.data, bytes): return self.data.decode(self.encoding) - elif isinstance(self.data, str): + if isinstance(self.data, str): return self.data - else: - msg = f"Unable to get string for blob {self}" - raise ValueError(msg) + msg = f"Unable to get string for blob {self}" + raise ValueError(msg) def as_bytes(self) -> bytes: """Read data as bytes.""" if isinstance(self.data, bytes): return self.data - elif isinstance(self.data, str): + if isinstance(self.data, str): return self.data.encode(self.encoding) - elif self.data is None and self.path: + if self.data is None and self.path: return Path(self.path).read_bytes() - else: - msg = f"Unable to get bytes for blob {self}" - raise ValueError(msg) + msg = f"Unable to get bytes for blob {self}" + raise ValueError(msg) @contextlib.contextmanager def as_bytes_io(self) -> Generator[Union[BytesIO, BufferedReader], None, None]: @@ -316,5 +313,4 @@ class Document(BaseMedia): # a more general solution of formatting content directly inside the prompts. if self.metadata: return f"page_content='{self.page_content}' metadata={self.metadata}" - else: - return f"page_content='{self.page_content}'" + return f"page_content='{self.page_content}'" diff --git a/libs/core/langchain_core/example_selectors/length_based.py b/libs/core/langchain_core/example_selectors/length_based.py index 792e6317cfd..ec9566d75ac 100644 --- a/libs/core/langchain_core/example_selectors/length_based.py +++ b/libs/core/langchain_core/example_selectors/length_based.py @@ -79,9 +79,8 @@ class LengthBasedExampleSelector(BaseExampleSelector, BaseModel): new_length = remaining_length - self.example_text_lengths[i] if new_length < 0: break - else: - examples.append(self.examples[i]) - remaining_length = new_length + examples.append(self.examples[i]) + remaining_length = new_length i += 1 return examples diff --git a/libs/core/langchain_core/example_selectors/semantic_similarity.py b/libs/core/langchain_core/example_selectors/semantic_similarity.py index 41ec8881c4a..b0362728aaa 100644 --- a/libs/core/langchain_core/example_selectors/semantic_similarity.py +++ b/libs/core/langchain_core/example_selectors/semantic_similarity.py @@ -54,8 +54,7 @@ class _VectorStoreExampleSelector(BaseExampleSelector, BaseModel, ABC): ) -> str: if input_keys: return " ".join(sorted_values({key: example[key] for key in input_keys})) - else: - return " ".join(sorted_values(example)) + return " ".join(sorted_values(example)) def _documents_to_examples(self, documents: list[Document]) -> list[dict]: # Get the examples from the metadata. diff --git a/libs/core/langchain_core/indexing/api.py b/libs/core/langchain_core/indexing/api.py index 80a9fb5dd77..16ff9ed4037 100644 --- a/libs/core/langchain_core/indexing/api.py +++ b/libs/core/langchain_core/indexing/api.py @@ -152,16 +152,15 @@ def _get_source_id_assigner( """Get the source id from the document.""" if source_id_key is None: return lambda doc: None - elif isinstance(source_id_key, str): + if isinstance(source_id_key, str): return lambda doc: doc.metadata[source_id_key] - elif callable(source_id_key): + if callable(source_id_key): return source_id_key - else: - msg = ( - f"source_id_key should be either None, a string or a callable. " - f"Got {source_id_key} of type {type(source_id_key)}." - ) - raise ValueError(msg) + msg = ( + f"source_id_key should be either None, a string or a callable. " + f"Got {source_id_key} of type {type(source_id_key)}." + ) + raise ValueError(msg) def _deduplicate_in_order( diff --git a/libs/core/langchain_core/language_models/base.py b/libs/core/langchain_core/language_models/base.py index 5e7a2ed7b47..f86c93882e1 100644 --- a/libs/core/langchain_core/language_models/base.py +++ b/libs/core/langchain_core/language_models/base.py @@ -143,8 +143,7 @@ class BaseLanguageModel( """ if verbose is None: return _get_verbosity() - else: - return verbose + return verbose @property @override @@ -351,8 +350,7 @@ class BaseLanguageModel( """ if self.custom_get_token_ids is not None: return self.custom_get_token_ids(text) - else: - return _get_token_ids_default_method(text) + return _get_token_ids_default_method(text) def get_num_tokens(self, text: str) -> int: """Get the number of tokens present in the text. diff --git a/libs/core/langchain_core/language_models/chat_models.py b/libs/core/langchain_core/language_models/chat_models.py index 9fa53ddf194..591a3d09b7e 100644 --- a/libs/core/langchain_core/language_models/chat_models.py +++ b/libs/core/langchain_core/language_models/chat_models.py @@ -284,16 +284,15 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC): def _convert_input(self, input: LanguageModelInput) -> PromptValue: if isinstance(input, PromptValue): return input - elif isinstance(input, str): + if isinstance(input, str): return StringPromptValue(text=input) - elif isinstance(input, Sequence): + if isinstance(input, Sequence): return ChatPromptValue(messages=convert_to_messages(input)) - else: - msg = ( - f"Invalid input type {type(input)}. " - "Must be a PromptValue, str, or list of BaseMessages." - ) - raise ValueError(msg) # noqa: TRY004 + msg = ( + f"Invalid input type {type(input)}. " + "Must be a PromptValue, str, or list of BaseMessages." + ) + raise ValueError(msg) # noqa: TRY004 @override def invoke( @@ -610,10 +609,9 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC): _cleanup_llm_representation(serialized_repr, 1) llm_string = json.dumps(serialized_repr, sort_keys=True) return llm_string + "---" + param_string - else: - params = self._get_invocation_params(stop=stop, **kwargs) - params = {**params, **kwargs} - return str(sorted(params.items())) + params = self._get_invocation_params(stop=stop, **kwargs) + params = {**params, **kwargs} + return str(sorted(params.items())) def generate( self, @@ -1107,9 +1105,8 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC): ).generations[0][0] if isinstance(generation, ChatGeneration): return generation.message - else: - msg = "Unexpected generation type" - raise ValueError(msg) # noqa: TRY004 + msg = "Unexpected generation type" + raise ValueError(msg) # noqa: TRY004 async def _call_async( self, @@ -1124,9 +1121,8 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC): generation = result.generations[0][0] if isinstance(generation, ChatGeneration): return generation.message - else: - msg = "Unexpected generation type" - raise ValueError(msg) # noqa: TRY004 + msg = "Unexpected generation type" + raise ValueError(msg) # noqa: TRY004 @deprecated("0.1.7", alternative="invoke", removal="1.0") def call_as_llm( @@ -1167,9 +1163,8 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC): result = self([HumanMessage(content=text)], stop=_stop, **kwargs) if isinstance(result.content, str): return result.content - else: - msg = "Cannot use predict when output is not a string." - raise ValueError(msg) # noqa: TRY004 + msg = "Cannot use predict when output is not a string." + raise ValueError(msg) # noqa: TRY004 @deprecated("0.1.7", alternative="invoke", removal="1.0") @override @@ -1194,9 +1189,8 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC): ) if isinstance(result.content, str): return result.content - else: - msg = "Cannot use predict when output is not a string." - raise ValueError(msg) # noqa: TRY004 + msg = "Cannot use predict when output is not a string." + raise ValueError(msg) # noqa: TRY004 @deprecated("0.1.7", alternative="ainvoke", removal="1.0") @override @@ -1391,8 +1385,7 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC): [parser_none], exception_key="parsing_error" ) return RunnableMap(raw=llm) | parser_with_fallback - else: - return llm | output_parser + return llm | output_parser class SimpleChatModel(BaseChatModel): diff --git a/libs/core/langchain_core/language_models/llms.py b/libs/core/langchain_core/language_models/llms.py index 5ceb6bc431f..326adf95603 100644 --- a/libs/core/langchain_core/language_models/llms.py +++ b/libs/core/langchain_core/language_models/llms.py @@ -251,8 +251,7 @@ def update_cache( prompt = prompts[missing_prompt_idxs[i]] if llm_cache is not None: llm_cache.update(prompt, llm_string, result) - llm_output = new_results.llm_output - return llm_output + return new_results.llm_output async def aupdate_cache( @@ -285,8 +284,7 @@ async def aupdate_cache( prompt = prompts[missing_prompt_idxs[i]] if llm_cache: await llm_cache.aupdate(prompt, llm_string, result) - llm_output = new_results.llm_output - return llm_output + return new_results.llm_output class BaseLLM(BaseLanguageModel[str], ABC): @@ -330,16 +328,15 @@ class BaseLLM(BaseLanguageModel[str], ABC): def _convert_input(self, input: LanguageModelInput) -> PromptValue: if isinstance(input, PromptValue): return input - elif isinstance(input, str): + if isinstance(input, str): return StringPromptValue(text=input) - elif isinstance(input, Sequence): + if isinstance(input, Sequence): return ChatPromptValue(messages=convert_to_messages(input)) - else: - msg = ( - f"Invalid input type {type(input)}. " - "Must be a PromptValue, str, or list of BaseMessages." - ) - raise ValueError(msg) # noqa: TRY004 + msg = ( + f"Invalid input type {type(input)}. " + "Must be a PromptValue, str, or list of BaseMessages." + ) + raise ValueError(msg) # noqa: TRY004 def _get_ls_params( self, @@ -452,8 +449,7 @@ class BaseLLM(BaseLanguageModel[str], ABC): except Exception as e: if return_exceptions: return cast("list[str]", [e for _ in inputs]) - else: - raise + raise else: batches = [ inputs[i : i + max_concurrency] @@ -499,8 +495,7 @@ class BaseLLM(BaseLanguageModel[str], ABC): except Exception as e: if return_exceptions: return cast("list[str]", [e for _ in inputs]) - else: - raise + raise else: batches = [ inputs[i : i + max_concurrency] @@ -973,14 +968,13 @@ class BaseLLM(BaseLanguageModel[str], ABC): callback_managers, prompts, run_name_list, run_ids_list ) ] - output = self._generate_helper( + return self._generate_helper( prompts, stop, run_managers, new_arg_supported=bool(new_arg_supported), **kwargs, ) - return output if len(missing_prompts) > 0: run_managers = [ callback_managers[idx].on_llm_start( @@ -1232,14 +1226,13 @@ class BaseLLM(BaseLanguageModel[str], ABC): ] ) run_managers = [r[0] for r in run_managers] # type: ignore[misc] - output = await self._agenerate_helper( + return await self._agenerate_helper( prompts, stop, run_managers, # type: ignore[arg-type] new_arg_supported=bool(new_arg_supported), **kwargs, # type: ignore[arg-type] ) - return output if len(missing_prompts) > 0: run_managers = await asyncio.gather( *[ diff --git a/libs/core/langchain_core/load/dump.py b/libs/core/langchain_core/load/dump.py index 252ccc8110c..b1993c38244 100644 --- a/libs/core/langchain_core/load/dump.py +++ b/libs/core/langchain_core/load/dump.py @@ -19,8 +19,7 @@ def default(obj: Any) -> Any: """ if isinstance(obj, Serializable): return obj.to_json() - else: - return to_json_not_implemented(obj) + return to_json_not_implemented(obj) def _dump_pydantic_models(obj: Any) -> Any: @@ -36,8 +35,7 @@ def _dump_pydantic_models(obj: Any) -> Any: obj_copy = obj.model_copy(deep=True) obj_copy.message.additional_kwargs["parsed"] = parsed.model_dump() return obj_copy - else: - return obj + return obj def dumps(obj: Any, *, pretty: bool = False, **kwargs: Any) -> str: @@ -64,14 +62,12 @@ def dumps(obj: Any, *, pretty: bool = False, **kwargs: Any) -> str: if pretty: indent = kwargs.pop("indent", 2) return json.dumps(obj, default=default, indent=indent, **kwargs) - else: - return json.dumps(obj, default=default, **kwargs) + return json.dumps(obj, default=default, **kwargs) except TypeError: if pretty: indent = kwargs.pop("indent", 2) return json.dumps(to_json_not_implemented(obj), indent=indent, **kwargs) - else: - return json.dumps(to_json_not_implemented(obj), **kwargs) + return json.dumps(to_json_not_implemented(obj), **kwargs) def dumpd(obj: Any) -> Any: diff --git a/libs/core/langchain_core/load/load.py b/libs/core/langchain_core/load/load.py index a5c37afd254..3a70b8ef683 100644 --- a/libs/core/langchain_core/load/load.py +++ b/libs/core/langchain_core/load/load.py @@ -98,10 +98,9 @@ class Reviver: [key] = value["id"] if key in self.secrets_map: return self.secrets_map[key] - else: - if self.secrets_from_env and key in os.environ and os.environ[key]: - return os.environ[key] - return None + if self.secrets_from_env and key in os.environ and os.environ[key]: + return os.environ[key] + return None if ( value.get("lc") == 1 @@ -130,7 +129,7 @@ class Reviver: msg = f"Invalid namespace: {value}" raise ValueError(msg) # Has explicit import path. - elif mapping_key in self.import_mappings: + if mapping_key in self.import_mappings: import_path = self.import_mappings[mapping_key] # Split into module and name import_dir, name = import_path[:-1], import_path[-1] diff --git a/libs/core/langchain_core/messages/ai.py b/libs/core/langchain_core/messages/ai.py index 49396c76fa6..3b9192577fe 100644 --- a/libs/core/langchain_core/messages/ai.py +++ b/libs/core/langchain_core/messages/ai.py @@ -372,7 +372,7 @@ class AIMessageChunk(AIMessage, BaseMessageChunk): def __add__(self, other: Any) -> BaseMessageChunk: # type: ignore if isinstance(other, AIMessageChunk): return add_ai_message_chunks(self, other) - elif isinstance(other, (list, tuple)) and all( + if isinstance(other, (list, tuple)) and all( isinstance(o, AIMessageChunk) for o in other ): return add_ai_message_chunks(self, *other) diff --git a/libs/core/langchain_core/messages/base.py b/libs/core/langchain_core/messages/base.py index ccdef4ba7e7..4baf977be48 100644 --- a/libs/core/langchain_core/messages/base.py +++ b/libs/core/langchain_core/messages/base.py @@ -65,8 +65,7 @@ class BaseMessage(Serializable): """Coerce the id field to a string.""" if id_value is not None: return str(id_value) - else: - return id_value + return id_value def __init__( self, content: Union[str, list[Union[str, dict]]], **kwargs: Any @@ -225,7 +224,7 @@ class BaseMessageChunk(BaseMessage): self.response_metadata, other.response_metadata ), ) - elif isinstance(other, list) and all( + if isinstance(other, list) and all( isinstance(o, BaseMessageChunk) for o in other ): content = merge_content(self.content, *(o.content for o in other)) @@ -241,13 +240,12 @@ class BaseMessageChunk(BaseMessage): additional_kwargs=additional_kwargs, response_metadata=response_metadata, ) - else: - msg = ( - 'unsupported operand type(s) for +: "' - f"{self.__class__.__name__}" - f'" and "{other.__class__.__name__}"' - ) - raise TypeError(msg) + msg = ( + 'unsupported operand type(s) for +: "' + f"{self.__class__.__name__}" + f'" and "{other.__class__.__name__}"' + ) + raise TypeError(msg) def message_to_dict(message: BaseMessage) -> dict: diff --git a/libs/core/langchain_core/messages/chat.py b/libs/core/langchain_core/messages/chat.py index b69f9f11147..05f1916070c 100644 --- a/libs/core/langchain_core/messages/chat.py +++ b/libs/core/langchain_core/messages/chat.py @@ -53,7 +53,7 @@ class ChatMessageChunk(ChatMessage, BaseMessageChunk): ), id=self.id, ) - elif isinstance(other, BaseMessageChunk): + if isinstance(other, BaseMessageChunk): return self.__class__( role=self.role, content=merge_content(self.content, other.content), @@ -65,5 +65,4 @@ class ChatMessageChunk(ChatMessage, BaseMessageChunk): ), id=self.id, ) - else: - return super().__add__(other) + return super().__add__(other) diff --git a/libs/core/langchain_core/messages/tool.py b/libs/core/langchain_core/messages/tool.py index 4f6e156edb5..f307d3dc044 100644 --- a/libs/core/langchain_core/messages/tool.py +++ b/libs/core/langchain_core/messages/tool.py @@ -320,25 +320,24 @@ def default_tool_parser( for raw_tool_call in raw_tool_calls: if "function" not in raw_tool_call: continue - else: - function_name = raw_tool_call["function"]["name"] - try: - function_args = json.loads(raw_tool_call["function"]["arguments"]) - parsed = tool_call( - name=function_name or "", - args=function_args or {}, + function_name = raw_tool_call["function"]["name"] + try: + function_args = json.loads(raw_tool_call["function"]["arguments"]) + parsed = tool_call( + name=function_name or "", + args=function_args or {}, + id=raw_tool_call.get("id"), + ) + tool_calls.append(parsed) + except json.JSONDecodeError: + invalid_tool_calls.append( + invalid_tool_call( + name=function_name, + args=raw_tool_call["function"]["arguments"], id=raw_tool_call.get("id"), + error=None, ) - tool_calls.append(parsed) - except json.JSONDecodeError: - invalid_tool_calls.append( - invalid_tool_call( - name=function_name, - args=raw_tool_call["function"]["arguments"], - id=raw_tool_call.get("id"), - error=None, - ) - ) + ) return tool_calls, invalid_tool_calls diff --git a/libs/core/langchain_core/messages/utils.py b/libs/core/langchain_core/messages/utils.py index 5f3ea3c233e..3b6ab2144ff 100644 --- a/libs/core/langchain_core/messages/utils.py +++ b/libs/core/langchain_core/messages/utils.py @@ -51,14 +51,13 @@ def _get_type(v: Any) -> str: """Get the type associated with the object for serialization purposes.""" if isinstance(v, dict) and "type" in v: return v["type"] - elif hasattr(v, "type"): + if hasattr(v, "type"): return v.type - else: - msg = ( - f"Expected either a dictionary with a 'type' key or an object " - f"with a 'type' attribute. Instead got type {type(v)}." - ) - raise TypeError(msg) + msg = ( + f"Expected either a dictionary with a 'type' key or an object " + f"with a 'type' attribute. Instead got type {type(v)}." + ) + raise TypeError(msg) AnyMessage = Annotated[ @@ -138,33 +137,32 @@ def _message_from_dict(message: dict) -> BaseMessage: _type = message["type"] if _type == "human": return HumanMessage(**message["data"]) - elif _type == "ai": + if _type == "ai": return AIMessage(**message["data"]) - elif _type == "system": + if _type == "system": return SystemMessage(**message["data"]) - elif _type == "chat": + if _type == "chat": return ChatMessage(**message["data"]) - elif _type == "function": + if _type == "function": return FunctionMessage(**message["data"]) - elif _type == "tool": + if _type == "tool": return ToolMessage(**message["data"]) - elif _type == "remove": + if _type == "remove": return RemoveMessage(**message["data"]) - elif _type == "AIMessageChunk": + if _type == "AIMessageChunk": return AIMessageChunk(**message["data"]) - elif _type == "HumanMessageChunk": + if _type == "HumanMessageChunk": return HumanMessageChunk(**message["data"]) - elif _type == "FunctionMessageChunk": + if _type == "FunctionMessageChunk": return FunctionMessageChunk(**message["data"]) - elif _type == "ToolMessageChunk": + if _type == "ToolMessageChunk": return ToolMessageChunk(**message["data"]) - elif _type == "SystemMessageChunk": + if _type == "SystemMessageChunk": return SystemMessageChunk(**message["data"]) - elif _type == "ChatMessageChunk": + if _type == "ChatMessageChunk": return ChatMessageChunk(**message["data"]) - else: - msg = f"Got unexpected message type: {_type}" - raise ValueError(msg) + msg = f"Got unexpected message type: {_type}" + raise ValueError(msg) def messages_from_dict(messages: Sequence[dict]) -> list[BaseMessage]: @@ -387,8 +385,7 @@ def _runnable_support(func: Callable) -> Callable: if messages is not None: return func(messages, **kwargs) - else: - return RunnableLambda(partial(func, **kwargs), name=func.__name__) + return RunnableLambda(partial(func, **kwargs), name=func.__name__) wrapped.__doc__ = func.__doc__ return wrapped @@ -472,8 +469,6 @@ def filter_messages( or (exclude_ids and msg.id in exclude_ids) ): continue - else: - pass if exclude_tool_calls is True and ( (isinstance(msg, AIMessage) and msg.tool_calls) @@ -926,7 +921,7 @@ def trim_messages( partial_strategy="first" if allow_partial else None, end_on=end_on, ) - elif strategy == "last": + if strategy == "last": return _last_max_tokens( messages, max_tokens=max_tokens, @@ -937,9 +932,8 @@ def trim_messages( end_on=end_on, text_splitter=text_splitter_fn, ) - else: - msg = f"Unrecognized {strategy=}. Supported strategies are 'last' and 'first'." - raise ValueError(msg) + msg = f"Unrecognized {strategy=}. Supported strategies are 'last' and 'first'." + raise ValueError(msg) def convert_to_openai_messages( @@ -1269,8 +1263,7 @@ def convert_to_openai_messages( if is_single: return oai_messages[0] - else: - return oai_messages + return oai_messages def _first_max_tokens( @@ -1347,7 +1340,7 @@ def _first_max_tokens( if isinstance(block, str): text = block break - elif isinstance(block, dict) and block.get("type") == "text": + if isinstance(block, dict) and block.get("type") == "text": text = block.get("text") break @@ -1517,19 +1510,18 @@ def _bytes_to_b64_str(bytes_: bytes) -> str: def _get_message_openai_role(message: BaseMessage) -> str: if isinstance(message, AIMessage): return "assistant" - elif isinstance(message, HumanMessage): + if isinstance(message, HumanMessage): return "user" - elif isinstance(message, ToolMessage): + if isinstance(message, ToolMessage): return "tool" - elif isinstance(message, SystemMessage): + if isinstance(message, SystemMessage): return message.additional_kwargs.get("__openai_role__", "system") - elif isinstance(message, FunctionMessage): + if isinstance(message, FunctionMessage): return "function" - elif isinstance(message, ChatMessage): + if isinstance(message, ChatMessage): return message.role - else: - msg = f"Unknown BaseMessage type {message.__class__}." - raise ValueError(msg) # noqa: TRY004 + msg = f"Unknown BaseMessage type {message.__class__}." + raise ValueError(msg) # noqa: TRY004 def _convert_to_openai_tool_calls(tool_calls: list[ToolCall]) -> list[dict]: diff --git a/libs/core/langchain_core/output_parsers/base.py b/libs/core/langchain_core/output_parsers/base.py index 8f42edd6e03..94055c9bee8 100644 --- a/libs/core/langchain_core/output_parsers/base.py +++ b/libs/core/langchain_core/output_parsers/base.py @@ -97,13 +97,12 @@ class BaseGenerationOutputParser( config, run_type="parser", ) - else: - return self._call_with_config( - lambda inner_input: self.parse_result([Generation(text=inner_input)]), - input, - config, - run_type="parser", - ) + return self._call_with_config( + lambda inner_input: self.parse_result([Generation(text=inner_input)]), + input, + config, + run_type="parser", + ) @override async def ainvoke( @@ -121,13 +120,12 @@ class BaseGenerationOutputParser( config, run_type="parser", ) - else: - return await self._acall_with_config( - lambda inner_input: self.aparse_result([Generation(text=inner_input)]), - input, - config, - run_type="parser", - ) + return await self._acall_with_config( + lambda inner_input: self.aparse_result([Generation(text=inner_input)]), + input, + config, + run_type="parser", + ) class BaseOutputParser( @@ -203,13 +201,12 @@ class BaseOutputParser( config, run_type="parser", ) - else: - return self._call_with_config( - lambda inner_input: self.parse_result([Generation(text=inner_input)]), - input, - config, - run_type="parser", - ) + return self._call_with_config( + lambda inner_input: self.parse_result([Generation(text=inner_input)]), + input, + config, + run_type="parser", + ) @override async def ainvoke( @@ -227,13 +224,12 @@ class BaseOutputParser( config, run_type="parser", ) - else: - return await self._acall_with_config( - lambda inner_input: self.aparse_result([Generation(text=inner_input)]), - input, - config, - run_type="parser", - ) + return await self._acall_with_config( + lambda inner_input: self.aparse_result([Generation(text=inner_input)]), + input, + config, + run_type="parser", + ) def parse_result(self, result: list[Generation], *, partial: bool = False) -> T: """Parse a list of candidate model Generations into a specific format. diff --git a/libs/core/langchain_core/output_parsers/json.py b/libs/core/langchain_core/output_parsers/json.py index ded392033b3..3dafaecc755 100644 --- a/libs/core/langchain_core/output_parsers/json.py +++ b/libs/core/langchain_core/output_parsers/json.py @@ -53,8 +53,9 @@ class JsonOutputParser(BaseCumulativeTransformOutputParser[Any]): def _get_schema(self, pydantic_object: type[TBaseModel]) -> dict[str, Any]: if issubclass(pydantic_object, pydantic.BaseModel): return pydantic_object.model_json_schema() - elif issubclass(pydantic_object, pydantic.v1.BaseModel): + if issubclass(pydantic_object, pydantic.v1.BaseModel): return pydantic_object.schema() + return None def parse_result(self, result: list[Generation], *, partial: bool = False) -> Any: """Parse the result of an LLM call to a JSON object. @@ -106,19 +107,18 @@ class JsonOutputParser(BaseCumulativeTransformOutputParser[Any]): """ if self.pydantic_object is None: return "Return a JSON object." - else: - # Copy schema to avoid altering original Pydantic schema. - schema = dict(self._get_schema(self.pydantic_object).items()) + # Copy schema to avoid altering original Pydantic schema. + schema = dict(self._get_schema(self.pydantic_object).items()) - # Remove extraneous fields. - reduced_schema = schema - if "title" in reduced_schema: - del reduced_schema["title"] - if "type" in reduced_schema: - del reduced_schema["type"] - # Ensure json in context is well-formed with double quotes. - schema_str = json.dumps(reduced_schema, ensure_ascii=False) - return JSON_FORMAT_INSTRUCTIONS.format(schema=schema_str) + # Remove extraneous fields. + reduced_schema = schema + if "title" in reduced_schema: + del reduced_schema["title"] + if "type" in reduced_schema: + del reduced_schema["type"] + # Ensure json in context is well-formed with double quotes. + schema_str = json.dumps(reduced_schema, ensure_ascii=False) + return JSON_FORMAT_INSTRUCTIONS.format(schema=schema_str) @property def _type(self) -> str: diff --git a/libs/core/langchain_core/output_parsers/openai_functions.py b/libs/core/langchain_core/output_parsers/openai_functions.py index 07be88f222b..73215284016 100644 --- a/libs/core/langchain_core/output_parsers/openai_functions.py +++ b/libs/core/langchain_core/output_parsers/openai_functions.py @@ -99,9 +99,8 @@ class JsonOutputFunctionsParser(BaseCumulativeTransformOutputParser[Any]): except KeyError as exc: if partial: return None - else: - msg = f"Could not parse function call: {exc}" - raise OutputParserException(msg) from exc + msg = f"Could not parse function call: {exc}" + raise OutputParserException(msg) from exc try: if partial: try: @@ -109,13 +108,12 @@ class JsonOutputFunctionsParser(BaseCumulativeTransformOutputParser[Any]): return parse_partial_json( function_call["arguments"], strict=self.strict ) - else: - return { - **function_call, - "arguments": parse_partial_json( - function_call["arguments"], strict=self.strict - ), - } + return { + **function_call, + "arguments": parse_partial_json( + function_call["arguments"], strict=self.strict + ), + } except json.JSONDecodeError: return None else: diff --git a/libs/core/langchain_core/output_parsers/openai_tools.py b/libs/core/langchain_core/output_parsers/openai_tools.py index 618197469c4..9ab28937677 100644 --- a/libs/core/langchain_core/output_parsers/openai_tools.py +++ b/libs/core/langchain_core/output_parsers/openai_tools.py @@ -241,10 +241,9 @@ class JsonOutputKeyToolsParser(JsonOutputToolsParser): ) if self.return_id: return single_result - elif single_result: + if single_result: return single_result["args"] - else: - return None + return None parsed_result = [res for res in parsed_result if res["type"] == self.key_name] if not self.return_id: parsed_result = [res["args"] for res in parsed_result] @@ -300,5 +299,4 @@ class PydanticToolsParser(JsonOutputToolsParser): raise if self.first_tool_only: return pydantic_objects[0] if pydantic_objects else None - else: - return pydantic_objects + return pydantic_objects diff --git a/libs/core/langchain_core/output_parsers/pydantic.py b/libs/core/langchain_core/output_parsers/pydantic.py index ff8695070fe..6550d4ce7d8 100644 --- a/libs/core/langchain_core/output_parsers/pydantic.py +++ b/libs/core/langchain_core/output_parsers/pydantic.py @@ -28,12 +28,11 @@ class PydanticOutputParser(JsonOutputParser, Generic[TBaseModel]): try: if issubclass(self.pydantic_object, pydantic.BaseModel): return self.pydantic_object.model_validate(obj) - elif issubclass(self.pydantic_object, pydantic.v1.BaseModel): + if issubclass(self.pydantic_object, pydantic.v1.BaseModel): return self.pydantic_object.parse_obj(obj) - else: - msg = f"Unsupported model version for PydanticOutputParser: \ + msg = f"Unsupported model version for PydanticOutputParser: \ {self.pydantic_object.__class__}" - raise OutputParserException(msg) + raise OutputParserException(msg) except (pydantic.ValidationError, pydantic.v1.ValidationError) as e: raise self._parser_exception(e, obj) from e else: # pydantic v1 diff --git a/libs/core/langchain_core/output_parsers/xml.py b/libs/core/langchain_core/output_parsers/xml.py index 085fdcf7279..ba7575c59d6 100644 --- a/libs/core/langchain_core/output_parsers/xml.py +++ b/libs/core/langchain_core/output_parsers/xml.py @@ -282,5 +282,4 @@ def nested_element(path: list[str], elem: ET.Element) -> Any: """ if len(path) == 0: return AddableDict({elem.tag: elem.text}) - else: - return AddableDict({path[0]: [nested_element(path[1:], elem)]}) + return AddableDict({path[0]: [nested_element(path[1:], elem)]}) diff --git a/libs/core/langchain_core/outputs/chat_generation.py b/libs/core/langchain_core/outputs/chat_generation.py index ef3eab3e08e..1579d95d2c9 100644 --- a/libs/core/langchain_core/outputs/chat_generation.py +++ b/libs/core/langchain_core/outputs/chat_generation.py @@ -60,11 +60,9 @@ class ChatGeneration(Generation): if isinstance(block, str): text = block break - elif isinstance(block, dict) and "text" in block: + if isinstance(block, dict) and "text" in block: text = block["text"] break - else: - pass else: pass self.text = text @@ -104,7 +102,7 @@ class ChatGenerationChunk(ChatGeneration): message=self.message + other.message, generation_info=generation_info or None, ) - elif isinstance(other, list) and all( + if isinstance(other, list) and all( isinstance(x, ChatGenerationChunk) for x in other ): generation_info = merge_dicts( @@ -115,8 +113,5 @@ class ChatGenerationChunk(ChatGeneration): message=self.message + [chunk.message for chunk in other], generation_info=generation_info or None, ) - else: - msg = ( - f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" - ) - raise TypeError(msg) + msg = f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" + raise TypeError(msg) diff --git a/libs/core/langchain_core/outputs/generation.py b/libs/core/langchain_core/outputs/generation.py index 2d3523bfb3e..8f3bbe5a77c 100644 --- a/libs/core/langchain_core/outputs/generation.py +++ b/libs/core/langchain_core/outputs/generation.py @@ -64,8 +64,5 @@ class GenerationChunk(Generation): text=self.text + other.text, generation_info=generation_info or None, ) - else: - msg = ( - f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" - ) - raise TypeError(msg) + msg = f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" + raise TypeError(msg) diff --git a/libs/core/langchain_core/prompts/chat.py b/libs/core/langchain_core/prompts/chat.py index 454e9e9eb56..50de9c25adb 100644 --- a/libs/core/langchain_core/prompts/chat.py +++ b/libs/core/langchain_core/prompts/chat.py @@ -513,7 +513,7 @@ class _StringImageMessagePromptTemplate(BaseMessagePromptTemplate): partial_variables=partial_variables, ) return cls(prompt=prompt, **kwargs) - elif isinstance(template, list): + if isinstance(template, list): if (partial_variables is not None) and len(partial_variables) > 0: msg = "Partial variables are not supported for list of templates." raise ValueError(msg) @@ -571,9 +571,8 @@ class _StringImageMessagePromptTemplate(BaseMessagePromptTemplate): msg = f"Invalid template: {tmpl}" raise ValueError(msg) return cls(prompt=prompt, **kwargs) - else: - msg = f"Invalid template: {template}" - raise ValueError(msg) # noqa: TRY004 + msg = f"Invalid template: {template}" + raise ValueError(msg) # noqa: TRY004 @classmethod def from_template_file( @@ -625,8 +624,7 @@ class _StringImageMessagePromptTemplate(BaseMessagePromptTemplate): List of input variable names. """ prompts = self.prompt if isinstance(self.prompt, list) else [self.prompt] - input_variables = [iv for prompt in prompts for iv in prompt.input_variables] - return input_variables + return [iv for prompt in prompts for iv in prompt.input_variables] def format(self, **kwargs: Any) -> BaseMessage: """Format the prompt template. @@ -642,19 +640,18 @@ class _StringImageMessagePromptTemplate(BaseMessagePromptTemplate): return self._msg_class( content=text, additional_kwargs=self.additional_kwargs ) - else: - content: list = [] - for prompt in self.prompt: - inputs = {var: kwargs[var] for var in prompt.input_variables} - if isinstance(prompt, StringPromptTemplate): - formatted: Union[str, ImageURL] = prompt.format(**inputs) - content.append({"type": "text", "text": formatted}) - elif isinstance(prompt, ImagePromptTemplate): - formatted = prompt.format(**inputs) - content.append({"type": "image_url", "image_url": formatted}) - return self._msg_class( - content=content, additional_kwargs=self.additional_kwargs - ) + content: list = [] + for prompt in self.prompt: + inputs = {var: kwargs[var] for var in prompt.input_variables} + if isinstance(prompt, StringPromptTemplate): + formatted: Union[str, ImageURL] = prompt.format(**inputs) + content.append({"type": "text", "text": formatted}) + elif isinstance(prompt, ImagePromptTemplate): + formatted = prompt.format(**inputs) + content.append({"type": "image_url", "image_url": formatted}) + return self._msg_class( + content=content, additional_kwargs=self.additional_kwargs + ) async def aformat(self, **kwargs: Any) -> BaseMessage: """Async format the prompt template. @@ -670,19 +667,18 @@ class _StringImageMessagePromptTemplate(BaseMessagePromptTemplate): return self._msg_class( content=text, additional_kwargs=self.additional_kwargs ) - else: - content: list = [] - for prompt in self.prompt: - inputs = {var: kwargs[var] for var in prompt.input_variables} - if isinstance(prompt, StringPromptTemplate): - formatted: Union[str, ImageURL] = await prompt.aformat(**inputs) - content.append({"type": "text", "text": formatted}) - elif isinstance(prompt, ImagePromptTemplate): - formatted = await prompt.aformat(**inputs) - content.append({"type": "image_url", "image_url": formatted}) - return self._msg_class( - content=content, additional_kwargs=self.additional_kwargs - ) + content: list = [] + for prompt in self.prompt: + inputs = {var: kwargs[var] for var in prompt.input_variables} + if isinstance(prompt, StringPromptTemplate): + formatted: Union[str, ImageURL] = await prompt.aformat(**inputs) + content.append({"type": "text", "text": formatted}) + elif isinstance(prompt, ImagePromptTemplate): + formatted = await prompt.aformat(**inputs) + content.append({"type": "image_url", "image_url": formatted}) + return self._msg_class( + content=content, additional_kwargs=self.additional_kwargs + ) def pretty_repr(self, html: bool = False) -> str: """Human-readable representation. @@ -1034,25 +1030,24 @@ class ChatPromptTemplate(BaseChatPromptTemplate): return ChatPromptTemplate(messages=self.messages + other.messages).partial( **partials ) # type: ignore[call-arg] - elif isinstance( + if isinstance( other, (BaseMessagePromptTemplate, BaseMessage, BaseChatPromptTemplate) ): return ChatPromptTemplate(messages=self.messages + [other]).partial( **partials ) # type: ignore[call-arg] - elif isinstance(other, (list, tuple)): + if isinstance(other, (list, tuple)): _other = ChatPromptTemplate.from_messages(other) return ChatPromptTemplate(messages=self.messages + _other.messages).partial( **partials ) # type: ignore[call-arg] - elif isinstance(other, str): + if isinstance(other, str): prompt = HumanMessagePromptTemplate.from_template(other) return ChatPromptTemplate(messages=self.messages + [prompt]).partial( **partials ) # type: ignore[call-arg] - else: - msg = f"Unsupported operand type for +: {type(other)}" - raise NotImplementedError(msg) + msg = f"Unsupported operand type for +: {type(other)}" + raise NotImplementedError(msg) @model_validator(mode="before") @classmethod @@ -1322,8 +1317,7 @@ class ChatPromptTemplate(BaseChatPromptTemplate): start, stop, step = index.indices(len(self.messages)) messages = self.messages[start:stop:step] return ChatPromptTemplate.from_messages(messages) - else: - return self.messages[index] + return self.messages[index] def __len__(self) -> int: """Get the length of the chat template.""" diff --git a/libs/core/langchain_core/prompts/few_shot.py b/libs/core/langchain_core/prompts/few_shot.py index f14699b47bf..4552d7a5b11 100644 --- a/libs/core/langchain_core/prompts/few_shot.py +++ b/libs/core/langchain_core/prompts/few_shot.py @@ -88,11 +88,10 @@ class _FewShotPromptTemplateMixin(BaseModel): """ if self.examples is not None: return self.examples - elif self.example_selector is not None: + if self.example_selector is not None: return self.example_selector.select_examples(kwargs) - else: - msg = "One of 'examples' and 'example_selector' should be provided" - raise ValueError(msg) + msg = "One of 'examples' and 'example_selector' should be provided" + raise ValueError(msg) async def _aget_examples(self, **kwargs: Any) -> list[dict]: """Async get the examples to use for formatting the prompt. @@ -108,11 +107,10 @@ class _FewShotPromptTemplateMixin(BaseModel): """ if self.examples is not None: return self.examples - elif self.example_selector is not None: + if self.example_selector is not None: return await self.example_selector.aselect_examples(kwargs) - else: - msg = "One of 'examples' and 'example_selector' should be provided" - raise ValueError(msg) + msg = "One of 'examples' and 'example_selector' should be provided" + raise ValueError(msg) class FewShotPromptTemplate(_FewShotPromptTemplateMixin, StringPromptTemplate): @@ -394,12 +392,11 @@ class FewShotChatMessagePromptTemplate( {k: e[k] for k in self.example_prompt.input_variables} for e in examples ] # Format the examples. - messages = [ + return [ message for example in examples for message in self.example_prompt.format_messages(**example) ] - return messages async def aformat_messages(self, **kwargs: Any) -> list[BaseMessage]: """Async format kwargs into a list of messages. @@ -416,12 +413,11 @@ class FewShotChatMessagePromptTemplate( {k: e[k] for k in self.example_prompt.input_variables} for e in examples ] # Format the examples. - messages = [ + return [ message for example in examples for message in await self.example_prompt.aformat_messages(**example) ] - return messages def format(self, **kwargs: Any) -> str: """Format the prompt with inputs generating a string. diff --git a/libs/core/langchain_core/prompts/few_shot_with_templates.py b/libs/core/langchain_core/prompts/few_shot_with_templates.py index da53d5b8c59..7a32146f4bd 100644 --- a/libs/core/langchain_core/prompts/few_shot_with_templates.py +++ b/libs/core/langchain_core/prompts/few_shot_with_templates.py @@ -97,18 +97,16 @@ class FewShotPromptWithTemplates(StringPromptTemplate): def _get_examples(self, **kwargs: Any) -> list[dict]: if self.examples is not None: return self.examples - elif self.example_selector is not None: + if self.example_selector is not None: return self.example_selector.select_examples(kwargs) - else: - raise ValueError + raise ValueError async def _aget_examples(self, **kwargs: Any) -> list[dict]: if self.examples is not None: return self.examples - elif self.example_selector is not None: + if self.example_selector is not None: return await self.example_selector.aselect_examples(kwargs) - else: - raise ValueError + raise ValueError def format(self, **kwargs: Any) -> str: """Format the prompt with the inputs. diff --git a/libs/core/langchain_core/prompts/image.py b/libs/core/langchain_core/prompts/image.py index 7c2fc4feef8..96a137dbe15 100644 --- a/libs/core/langchain_core/prompts/image.py +++ b/libs/core/langchain_core/prompts/image.py @@ -110,14 +110,13 @@ class ImagePromptTemplate(BasePromptTemplate[ImageURL]): if not url: msg = "Must provide url." raise ValueError(msg) - elif not isinstance(url, str): + if not isinstance(url, str): msg = "url must be a string." - raise ValueError(msg) - else: - output: ImageURL = {"url": url} - if detail: - # Don't check literal values here: let the API check them - output["detail"] = detail # type: ignore[typeddict-item] + raise ValueError(msg) # noqa: TRY004 + output: ImageURL = {"url": url} + if detail: + # Don't check literal values here: let the API check them + output["detail"] = detail # type: ignore[typeddict-item] return output async def aformat(self, **kwargs: Any) -> ImageURL: diff --git a/libs/core/langchain_core/prompts/prompt.py b/libs/core/langchain_core/prompts/prompt.py index c60d77fb6d7..a9fdee95c40 100644 --- a/libs/core/langchain_core/prompts/prompt.py +++ b/libs/core/langchain_core/prompts/prompt.py @@ -154,8 +154,7 @@ class PromptTemplate(StringPromptTemplate): if k in partial_variables: msg = "Cannot have same variable partialed twice." raise ValueError(msg) - else: - partial_variables[k] = v + partial_variables[k] = v return PromptTemplate( template=template, input_variables=input_variables, @@ -163,12 +162,11 @@ class PromptTemplate(StringPromptTemplate): template_format="f-string", validate_template=validate_template, ) - elif isinstance(other, str): + if isinstance(other, str): prompt = PromptTemplate.from_template(other) return self + prompt - else: - msg = f"Unsupported operand type for +: {type(other)}" - raise NotImplementedError(msg) + msg = f"Unsupported operand type for +: {type(other)}" + raise NotImplementedError(msg) @property def _prompt_type(self) -> str: diff --git a/libs/core/langchain_core/prompts/string.py b/libs/core/langchain_core/prompts/string.py index 3259cccccda..e9165f90da2 100644 --- a/libs/core/langchain_core/prompts/string.py +++ b/libs/core/langchain_core/prompts/string.py @@ -100,8 +100,7 @@ def _get_jinja2_variables_from_template(template: str) -> set[str]: # noqa for insecure warning elsewhere env = Environment() # noqa: S701 ast = env.parse(template) - variables = meta.find_undeclared_variables(ast) - return variables + return meta.find_undeclared_variables(ast) def mustache_formatter(template: str, /, **kwargs: Any) -> str: diff --git a/libs/core/langchain_core/prompts/structured.py b/libs/core/langchain_core/prompts/structured.py index 4dc72b861af..064073277d7 100644 --- a/libs/core/langchain_core/prompts/structured.py +++ b/libs/core/langchain_core/prompts/structured.py @@ -166,6 +166,5 @@ class StructuredPrompt(ChatPromptTemplate): *others[1:], name=name, ) - else: - msg = "Structured prompts need to be piped to a language model." - raise NotImplementedError(msg) + msg = "Structured prompts need to be piped to a language model." + raise NotImplementedError(msg) diff --git a/libs/core/langchain_core/retrievers.py b/libs/core/langchain_core/retrievers.py index e8af9d8d7cb..c05372027d9 100644 --- a/libs/core/langchain_core/retrievers.py +++ b/libs/core/langchain_core/retrievers.py @@ -208,8 +208,7 @@ class BaseRetriever(RunnableSerializable[RetrieverInput, RetrieverOutput], ABC): default_retriever_name = default_retriever_name[:-9] default_retriever_name = default_retriever_name.lower() - ls_params = LangSmithRetrieverParams(ls_retriever_name=default_retriever_name) - return ls_params + return LangSmithRetrieverParams(ls_retriever_name=default_retriever_name) def invoke( self, input: str, config: Optional[RunnableConfig] = None, **kwargs: Any diff --git a/libs/core/langchain_core/runnables/base.py b/libs/core/langchain_core/runnables/base.py index 5aa28445faf..3d5fef4e2f2 100644 --- a/libs/core/langchain_core/runnables/base.py +++ b/libs/core/langchain_core/runnables/base.py @@ -269,10 +269,8 @@ class Runnable(Generic[Input, Output], ABC): if suffix: if name_[0].isupper(): return name_ + suffix.title() - else: - return name_ + "_" + suffix.lower() - else: - return name_ + return name_ + "_" + suffix.lower() + return name_ @property def InputType(self) -> type[Input]: # noqa: N802 @@ -513,10 +511,9 @@ class Runnable(Generic[Input, Output], ABC): if field_name in [i for i in include if i != "configurable"] }, } - model = create_model_v2( # type: ignore[call-overload] + return create_model_v2( # type: ignore[call-overload] self.get_name("Config"), field_definitions=all_fields ) - return model def get_config_jsonschema( self, *, include: Optional[Sequence[str]] = None @@ -2051,8 +2048,7 @@ class Runnable(Generic[Input, Output], ABC): run_manager.on_chain_error(e) if return_exceptions: return cast("list[Output]", [e for _ in input]) - else: - raise + raise else: first_exception: Optional[Exception] = None for run_manager, out in zip(run_managers, output): @@ -2063,8 +2059,7 @@ class Runnable(Generic[Input, Output], ABC): run_manager.on_chain_end(out) if return_exceptions or first_exception is None: return cast("list[Output]", output) - else: - raise first_exception + raise first_exception async def _abatch_with_config( self, @@ -2130,8 +2125,7 @@ class Runnable(Generic[Input, Output], ABC): ) if return_exceptions: return cast("list[Output]", [e for _ in input]) - else: - raise + raise else: first_exception: Optional[Exception] = None coros: list[Awaitable[None]] = [] @@ -2144,8 +2138,7 @@ class Runnable(Generic[Input, Output], ABC): await asyncio.gather(*coros) if return_exceptions or first_exception is None: return cast("list[Output]", output) - else: - raise first_exception + raise first_exception def _transform_stream_with_config( self, @@ -2615,7 +2608,7 @@ def _seq_input_schema( first = steps[0] if len(steps) == 1: return first.get_input_schema(config) - elif isinstance(first, RunnableAssign): + if isinstance(first, RunnableAssign): next_input_schema = _seq_input_schema(steps[1:], config) if not issubclass(next_input_schema, RootModel): # it's a dict as expected @@ -2641,7 +2634,7 @@ def _seq_output_schema( last = steps[-1] if len(steps) == 1: return last.get_input_schema(config) - elif isinstance(last, RunnableAssign): + if isinstance(last, RunnableAssign): mapper_output_schema = last.mapper.get_output_schema(config) prev_output_schema = _seq_output_schema(steps[:-1], config) if not issubclass(prev_output_schema, RootModel): @@ -2672,11 +2665,10 @@ def _seq_output_schema( if k in last.keys }, ) - else: - field = prev_output_schema.model_fields[last.keys] - return create_model_v2( # type: ignore[call-overload] - "RunnableSequenceOutput", root=(field.annotation, field.default) - ) + field = prev_output_schema.model_fields[last.keys] + return create_model_v2( # type: ignore[call-overload] + "RunnableSequenceOutput", root=(field.annotation, field.default) + ) return last.get_output_schema(config) @@ -2988,14 +2980,13 @@ class RunnableSequence(RunnableSerializable[Input, Output]): other.last, name=self.name or other.name, ) - else: - return RunnableSequence( - self.first, - *self.middle, - self.last, - coerce_to_runnable(other), - name=self.name, - ) + return RunnableSequence( + self.first, + *self.middle, + self.last, + coerce_to_runnable(other), + name=self.name, + ) @override def __ror__( @@ -3017,14 +3008,13 @@ class RunnableSequence(RunnableSerializable[Input, Output]): self.last, name=other.name or self.name, ) - else: - return RunnableSequence( - coerce_to_runnable(other), - self.first, - *self.middle, - self.last, - name=self.name, - ) + return RunnableSequence( + coerce_to_runnable(other), + self.first, + *self.middle, + self.last, + name=self.name, + ) @override def invoke( @@ -3224,8 +3214,7 @@ class RunnableSequence(RunnableSerializable[Input, Output]): rm.on_chain_error(e) if return_exceptions: return cast("list[Output]", [e for _ in inputs]) - else: - raise + raise else: first_exception: Optional[Exception] = None for run_manager, out in zip(run_managers, inputs): @@ -3236,8 +3225,7 @@ class RunnableSequence(RunnableSerializable[Input, Output]): run_manager.on_chain_end(out) if return_exceptions or first_exception is None: return cast("list[Output]", inputs) - else: - raise first_exception + raise first_exception @override async def abatch( @@ -3357,8 +3345,7 @@ class RunnableSequence(RunnableSerializable[Input, Output]): await asyncio.gather(*(rm.on_chain_error(e) for rm in run_managers)) if return_exceptions: return cast("list[Output]", [e for _ in inputs]) - else: - raise + raise else: first_exception: Optional[Exception] = None coros: list[Awaitable[None]] = [] @@ -3371,8 +3358,7 @@ class RunnableSequence(RunnableSerializable[Input, Output]): await asyncio.gather(*coros) if return_exceptions or first_exception is None: return cast("list[Output]", inputs) - else: - raise first_exception + raise first_exception def _transform( self, @@ -3826,8 +3812,7 @@ class RunnableParallel(RunnableSerializable[Input, dict[str, Any]]): return await asyncio.create_task( # type: ignore step.ainvoke(input, child_config), context=context ) - else: - return await asyncio.create_task(step.ainvoke(input, child_config)) + return await asyncio.create_task(step.ainvoke(input, child_config)) # gather results from all steps try: @@ -4141,10 +4126,9 @@ class RunnableGenerator(Runnable[Input, Output]): first_param = next(iter(params.values()), None) if first_param and first_param.annotation != inspect.Parameter.empty: return getattr(first_param.annotation, "__args__", (Any,))[0] - else: - return Any except ValueError: - return Any + pass + return Any @override def get_input_schema( @@ -4220,12 +4204,10 @@ class RunnableGenerator(Runnable[Input, Output]): if isinstance(other, RunnableGenerator): if hasattr(self, "_transform") and hasattr(other, "_transform"): return self._transform == other._transform - elif hasattr(self, "_atransform") and hasattr(other, "_atransform"): + if hasattr(self, "_atransform") and hasattr(other, "_atransform"): return self._atransform == other._atransform - else: - return False - else: return False + return False @override def __repr__(self) -> str: @@ -4443,10 +4425,9 @@ class RunnableLambda(Runnable[Input, Output]): first_param = next(iter(params.values()), None) if first_param and first_param.annotation != inspect.Parameter.empty: return first_param.annotation - else: - return Any except ValueError: - return Any + pass + return Any @override def get_input_schema( @@ -4472,16 +4453,15 @@ class RunnableLambda(Runnable[Input, Output]): fields = {item[1:-1]: (Any, ...) for item in items} # It's a dict, lol return create_model_v2(self.get_name("Input"), field_definitions=fields) - else: - module = getattr(func, "__module__", None) - return create_model_v2( - self.get_name("Input"), - root=list[Any], - # To create the schema, we need to provide the module - # where the underlying function is defined. - # This allows pydantic to resolve type annotations appropriately. - module_name=module, - ) + module = getattr(func, "__module__", None) + return create_model_v2( + self.get_name("Input"), + root=list[Any], + # To create the schema, we need to provide the module + # where the underlying function is defined. + # This allows pydantic to resolve type annotations appropriately. + module_name=module, + ) if self.InputType != Any: return super().get_input_schema(config) @@ -4513,10 +4493,9 @@ class RunnableLambda(Runnable[Input, Output]): ): return getattr(sig.return_annotation, "__args__", (Any,))[0] return sig.return_annotation - else: - return Any except ValueError: - return Any + pass + return Any @override def get_output_schema( @@ -4607,12 +4586,10 @@ class RunnableLambda(Runnable[Input, Output]): if isinstance(other, RunnableLambda): if hasattr(self, "func") and hasattr(other, "func"): return self.func == other.func - elif hasattr(self, "afunc") and hasattr(other, "afunc"): + if hasattr(self, "afunc") and hasattr(other, "afunc"): return self.afunc == other.afunc - else: - return False - else: return False + return False def __repr__(self) -> str: """A string representation of this Runnable.""" @@ -4806,12 +4783,8 @@ class RunnableLambda(Runnable[Input, Output]): self._config(config, self.func), **kwargs, ) - else: - msg = ( - "Cannot invoke a coroutine function synchronously." - "Use `ainvoke` instead." - ) - raise TypeError(msg) + msg = "Cannot invoke a coroutine function synchronously.Use `ainvoke` instead." + raise TypeError(msg) @override async def ainvoke( @@ -5886,7 +5859,7 @@ class RunnableBinding(RunnableBindingBase[Input, Output]): ) return wrapper - elif config_param.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD: + if config_param.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD: idx = list(inspect.signature(attr).parameters).index("config") @wraps(attr) @@ -5895,14 +5868,11 @@ class RunnableBinding(RunnableBindingBase[Input, Output]): argsl = list(args) argsl[idx] = merge_configs(self.config, argsl[idx]) return attr(*argsl, **kwargs) - else: - return attr( - *args, - config=merge_configs( - self.config, kwargs.pop("config", None) - ), - **kwargs, - ) + return attr( + *args, + config=merge_configs(self.config, kwargs.pop("config", None)), + **kwargs, + ) return wrapper @@ -5957,18 +5927,17 @@ def coerce_to_runnable(thing: RunnableLike) -> Runnable[Input, Output]: """ if isinstance(thing, Runnable): return thing - elif is_async_generator(thing) or inspect.isgeneratorfunction(thing): + if is_async_generator(thing) or inspect.isgeneratorfunction(thing): return RunnableGenerator(thing) - elif callable(thing): + if callable(thing): return RunnableLambda(cast("Callable[[Input], Output]", thing)) - elif isinstance(thing, dict): + if isinstance(thing, dict): return cast("Runnable[Input, Output]", RunnableParallel(thing)) - else: - msg = ( - f"Expected a Runnable, callable or dict." - f"Instead got an unsupported type: {type(thing)}" - ) - raise TypeError(msg) + msg = ( + f"Expected a Runnable, callable or dict." + f"Instead got an unsupported type: {type(thing)}" + ) + raise TypeError(msg) @overload diff --git a/libs/core/langchain_core/runnables/configurable.py b/libs/core/langchain_core/runnables/configurable.py index cc8110d6354..6f817da4b07 100644 --- a/libs/core/langchain_core/runnables/configurable.py +++ b/libs/core/langchain_core/runnables/configurable.py @@ -314,8 +314,7 @@ class DynamicRunnable(RunnableSerializable[Input, Output]): return wrapper - else: - return attr + return attr class RunnableConfigurableFields(DynamicRunnable[Input, Output]): @@ -462,8 +461,7 @@ class RunnableConfigurableFields(DynamicRunnable[Input, Output]): self.default.__class__(**{**init_params, **configurable}), config, ) - else: - return (self.default, config) + return (self.default, config) RunnableConfigurableFields.model_rebuild() @@ -638,15 +636,13 @@ class RunnableConfigurableAlternatives(DynamicRunnable[Input, Output]): # return the chosen alternative if which == self.default_key: return (self.default, config) - elif which in self.alternatives: + if which in self.alternatives: alt = self.alternatives[which] if isinstance(alt, Runnable): return (alt, config) - else: - return (alt(), config) - else: - msg = f"Unknown alternative: {which}" - raise ValueError(msg) + return (alt(), config) + msg = f"Unknown alternative: {which}" + raise ValueError(msg) def _strremoveprefix(s: str, prefix: str) -> str: @@ -714,12 +710,11 @@ def make_options_spec( default=spec.default, is_shared=spec.is_shared, ) - else: - return ConfigurableFieldSpec( - id=spec.id, - name=spec.name, - description=spec.description or description, - annotation=Sequence[enum], # type: ignore[valid-type] - default=spec.default, - is_shared=spec.is_shared, - ) + return ConfigurableFieldSpec( + id=spec.id, + name=spec.name, + description=spec.description or description, + annotation=Sequence[enum], # type: ignore[valid-type] + default=spec.default, + is_shared=spec.is_shared, + ) diff --git a/libs/core/langchain_core/runnables/fallbacks.py b/libs/core/langchain_core/runnables/fallbacks.py index 7c1ac281b71..2b57229fce1 100644 --- a/libs/core/langchain_core/runnables/fallbacks.py +++ b/libs/core/langchain_core/runnables/fallbacks.py @@ -661,7 +661,6 @@ def _is_runnable_type(type_: Any) -> bool: origin = getattr(type_, "__origin__", None) if inspect.isclass(origin): return issubclass(origin, Runnable) - elif origin is typing.Union: + if origin is typing.Union: return all(_is_runnable_type(t) for t in type_.__args__) - else: - return False + return False diff --git a/libs/core/langchain_core/runnables/graph.py b/libs/core/langchain_core/runnables/graph.py index 9fe43940f32..c94cf1f8743 100644 --- a/libs/core/langchain_core/runnables/graph.py +++ b/libs/core/langchain_core/runnables/graph.py @@ -195,10 +195,7 @@ def node_data_str(id: str, data: Union[type[BaseModel], RunnableType]) -> str: if not is_uuid(id): return id - elif isinstance(data, Runnable): - data_str = data.get_name() - else: - data_str = data.__name__ + data_str = data.get_name() if isinstance(data, Runnable) else data.__name__ return data_str if not data_str.startswith("Runnable") else data_str[8:] @@ -449,8 +446,7 @@ class Graph: label = unique_labels[node_id] if is_uuid(node_id): return label - else: - return node_id + return node_id return Graph( nodes={ diff --git a/libs/core/langchain_core/runnables/graph_mermaid.py b/libs/core/langchain_core/runnables/graph_mermaid.py index 5db48da6d7f..0cdb2d051ed 100644 --- a/libs/core/langchain_core/runnables/graph_mermaid.py +++ b/libs/core/langchain_core/runnables/graph_mermaid.py @@ -407,9 +407,8 @@ def _render_mermaid_using_api( Path(output_file_path).write_bytes(response.content) return img_bytes - else: - msg = ( - f"Failed to render the graph using the Mermaid.INK API. " - f"Status code: {response.status_code}." - ) - raise ValueError(msg) + msg = ( + f"Failed to render the graph using the Mermaid.INK API. " + f"Status code: {response.status_code}." + ) + raise ValueError(msg) diff --git a/libs/core/langchain_core/runnables/history.py b/libs/core/langchain_core/runnables/history.py index 5112534e555..15f2021a463 100644 --- a/libs/core/langchain_core/runnables/history.py +++ b/libs/core/langchain_core/runnables/history.py @@ -398,8 +398,7 @@ class RunnableWithMessageHistory(RunnableBindingBase): @property @override def OutputType(self) -> type[Output]: - output_type = self._history_chain.OutputType - return output_type + return self._history_chain.OutputType def get_output_schema( self, config: Optional[RunnableConfig] = None @@ -460,10 +459,10 @@ class RunnableWithMessageHistory(RunnableBindingBase): return [HumanMessage(content=input_val)] # If value is a single message, convert to a list - elif isinstance(input_val, BaseMessage): + if isinstance(input_val, BaseMessage): return [input_val] # If value is a list or tuple... - elif isinstance(input_val, (list, tuple)): + if isinstance(input_val, (list, tuple)): # Handle empty case if len(input_val) == 0: return list(input_val) @@ -475,12 +474,11 @@ class RunnableWithMessageHistory(RunnableBindingBase): raise ValueError(msg) return input_val[0] return list(input_val) - else: - msg = ( - f"Expected str, BaseMessage, List[BaseMessage], or Tuple[BaseMessage]. " - f"Got {input_val}." - ) - raise ValueError(msg) # noqa: TRY004 + msg = ( + f"Expected str, BaseMessage, List[BaseMessage], or Tuple[BaseMessage]. " + f"Got {input_val}." + ) + raise ValueError(msg) # noqa: TRY004 def _get_output_messages( self, output_val: Union[str, BaseMessage, Sequence[BaseMessage], dict] @@ -507,16 +505,15 @@ class RunnableWithMessageHistory(RunnableBindingBase): return [AIMessage(content=output_val)] # If value is a single message, convert to a list - elif isinstance(output_val, BaseMessage): + if isinstance(output_val, BaseMessage): return [output_val] - elif isinstance(output_val, (list, tuple)): + if isinstance(output_val, (list, tuple)): return list(output_val) - else: - msg = ( - f"Expected str, BaseMessage, List[BaseMessage], or Tuple[BaseMessage]. " - f"Got {output_val}." - ) - raise ValueError(msg) # noqa: TRY004 + msg = ( + f"Expected str, BaseMessage, List[BaseMessage], or Tuple[BaseMessage]. " + f"Got {output_val}." + ) + raise ValueError(msg) # noqa: TRY004 def _enter_history(self, input: Any, config: RunnableConfig) -> list[BaseMessage]: hist: BaseChatMessageHistory = config["configurable"]["message_history"] diff --git a/libs/core/langchain_core/runnables/passthrough.py b/libs/core/langchain_core/runnables/passthrough.py index 3f87f6b22e5..428e98f5cf6 100644 --- a/libs/core/langchain_core/runnables/passthrough.py +++ b/libs/core/langchain_core/runnables/passthrough.py @@ -459,7 +459,7 @@ class RunnableAssign(RunnableSerializable[dict[str, Any], dict[str, Any]]): return create_model_v2( # type: ignore[call-overload] "RunnableAssignOutput", field_definitions=fields ) - elif not issubclass(map_output_schema, RootModel): + if not issubclass(map_output_schema, RootModel): # ie. only map output is a dict # ie. input type is either unknown or inferred incorrectly return map_output_schema @@ -741,12 +741,10 @@ class RunnablePick(RunnableSerializable[dict[str, Any], dict[str, Any]]): if isinstance(self.keys, str): return input.get(self.keys) - else: - picked = {k: input.get(k) for k in self.keys if k in input} - if picked: - return AddableDict(picked) - else: - return None + picked = {k: input.get(k) for k in self.keys if k in input} + if picked: + return AddableDict(picked) + return None def _invoke( self, diff --git a/libs/core/langchain_core/runnables/utils.py b/libs/core/langchain_core/runnables/utils.py index 44d72379c61..2a882e427ee 100644 --- a/libs/core/langchain_core/runnables/utils.py +++ b/libs/core/langchain_core/runnables/utils.py @@ -440,11 +440,10 @@ def get_function_nonlocals(func: Callable) -> list[Any]: for part in kk.split(".")[1:]: if vv is None: break - else: - try: - vv = getattr(vv, part) - except AttributeError: - break + try: + vv = getattr(vv, part) + except AttributeError: + break else: values.append(vv) except (SyntaxError, TypeError, OSError, SystemError): diff --git a/libs/core/langchain_core/tools/base.py b/libs/core/langchain_core/tools/base.py index bea485ad247..dec85291e51 100644 --- a/libs/core/langchain_core/tools/base.py +++ b/libs/core/langchain_core/tools/base.py @@ -501,8 +501,7 @@ class ChildTool(BaseTool): if isinstance(self.args_schema, dict): return super().get_input_schema(config) return self.args_schema - else: - return create_schema_from_function(self.name, self._run) + return create_schema_from_function(self.name, self._run) @override def invoke( @@ -550,58 +549,54 @@ class ChildTool(BaseTool): else: input_args.parse_obj({key_: tool_input}) return tool_input - else: - if input_args is not None: - if isinstance(input_args, dict): - return tool_input - elif issubclass(input_args, BaseModel): - for k, v in get_all_basemodel_annotations(input_args).items(): - if ( - _is_injected_arg_type(v, injected_type=InjectedToolCallId) - and k not in tool_input - ): - if tool_call_id is None: - msg = ( - "When tool includes an InjectedToolCallId " - "argument, tool must always be invoked with a full " - "model ToolCall of the form: {'args': {...}, " - "'name': '...', 'type': 'tool_call', " - "'tool_call_id': '...'}" - ) - raise ValueError(msg) - tool_input[k] = tool_call_id - result = input_args.model_validate(tool_input) - result_dict = result.model_dump() - elif issubclass(input_args, BaseModelV1): - for k, v in get_all_basemodel_annotations(input_args).items(): - if ( - _is_injected_arg_type(v, injected_type=InjectedToolCallId) - and k not in tool_input - ): - if tool_call_id is None: - msg = ( - "When tool includes an InjectedToolCallId " - "argument, tool must always be invoked with a full " - "model ToolCall of the form: {'args': {...}, " - "'name': '...', 'type': 'tool_call', " - "'tool_call_id': '...'}" - ) - raise ValueError(msg) - tool_input[k] = tool_call_id - result = input_args.parse_obj(tool_input) - result_dict = result.dict() - else: - msg = ( - "args_schema must be a Pydantic BaseModel, " - f"got {self.args_schema}" - ) - raise NotImplementedError(msg) - return { - k: getattr(result, k) - for k, v in result_dict.items() - if k in tool_input - } - return tool_input + if input_args is not None: + if isinstance(input_args, dict): + return tool_input + if issubclass(input_args, BaseModel): + for k, v in get_all_basemodel_annotations(input_args).items(): + if ( + _is_injected_arg_type(v, injected_type=InjectedToolCallId) + and k not in tool_input + ): + if tool_call_id is None: + msg = ( + "When tool includes an InjectedToolCallId " + "argument, tool must always be invoked with a full " + "model ToolCall of the form: {'args': {...}, " + "'name': '...', 'type': 'tool_call', " + "'tool_call_id': '...'}" + ) + raise ValueError(msg) + tool_input[k] = tool_call_id + result = input_args.model_validate(tool_input) + result_dict = result.model_dump() + elif issubclass(input_args, BaseModelV1): + for k, v in get_all_basemodel_annotations(input_args).items(): + if ( + _is_injected_arg_type(v, injected_type=InjectedToolCallId) + and k not in tool_input + ): + if tool_call_id is None: + msg = ( + "When tool includes an InjectedToolCallId " + "argument, tool must always be invoked with a full " + "model ToolCall of the form: {'args': {...}, " + "'name': '...', 'type': 'tool_call', " + "'tool_call_id': '...'}" + ) + raise ValueError(msg) + tool_input[k] = tool_call_id + result = input_args.parse_obj(tool_input) + result_dict = result.dict() + else: + msg = ( + f"args_schema must be a Pydantic BaseModel, got {self.args_schema}" + ) + raise NotImplementedError(msg) + return { + k: getattr(result, k) for k, v in result_dict.items() if k in tool_input + } + return tool_input @model_validator(mode="before") @classmethod @@ -659,17 +654,16 @@ class ChildTool(BaseTool): # pass as a positional argument. if isinstance(tool_input, str): return (tool_input,), {} - elif isinstance(tool_input, dict): + if isinstance(tool_input, dict): # Make a shallow copy of the input to allow downstream code # to modify the root level of the input without affecting the # original input. # This is used by the tool to inject run time information like # the callback manager. return (), tool_input.copy() - else: - # This code path is not expected to be reachable. - msg = f"Invalid tool input type: {type(tool_input)}" - raise TypeError(msg) + # This code path is not expected to be reachable. + msg = f"Invalid tool input type: {type(tool_input)}" + raise TypeError(msg) def run( self, @@ -1012,10 +1006,9 @@ def _is_message_content_block(obj: Any) -> bool: """Check for OpenAI or Anthropic format tool message content blocks.""" if isinstance(obj, str): return True - elif isinstance(obj, dict): + if isinstance(obj, dict): return obj.get("type", None) in ("text", "image_url", "image", "json") - else: - return False + return False def _stringify(content: Any) -> str: @@ -1153,18 +1146,16 @@ def _replace_type_vars( if isinstance(type_, TypeVar): if type_ in generic_map: return generic_map[type_] - elif default_to_bound: + if default_to_bound: return type_.__bound__ or Any - else: - return type_ - elif (origin := get_origin(type_)) and (args := get_args(type_)): + return type_ + if (origin := get_origin(type_)) and (args := get_args(type_)): new_args = tuple( _replace_type_vars(arg, generic_map, default_to_bound=default_to_bound) for arg in args ) return _py_38_safe_origin(origin)[new_args] # type: ignore[index] - else: - return type_ + return type_ class BaseToolkit(BaseModel, ABC): diff --git a/libs/core/langchain_core/tools/convert.py b/libs/core/langchain_core/tools/convert.py index 8e45d2ddd53..ee84facfaf5 100644 --- a/libs/core/langchain_core/tools/convert.py +++ b/libs/core/langchain_core/tools/convert.py @@ -310,14 +310,14 @@ def tool( msg = "Name must be a string for tool constructor" raise ValueError(msg) return _create_tool_factory(name_or_callable)(runnable) - elif name_or_callable is not None: + if name_or_callable is not None: if callable(name_or_callable) and hasattr(name_or_callable, "__name__"): # Used as a decorator without parameters # @tool # def my_tool(): # pass return _create_tool_factory(name_or_callable.__name__)(name_or_callable) - elif isinstance(name_or_callable, str): + if isinstance(name_or_callable, str): # Used with a new name for the tool # @tool("search") # def my_tool(): @@ -329,24 +329,23 @@ def tool( # def my_tool(): # pass return _create_tool_factory(name_or_callable) - else: - msg = ( - f"The first argument must be a string or a callable with a __name__ " - f"for tool decorator. Got {type(name_or_callable)}" - ) - raise ValueError(msg) - else: - # Tool is used as a decorator with parameters specified - # @tool(parse_docstring=True) - # def my_tool(): - # pass - def _partial(func: Union[Callable, Runnable]) -> BaseTool: - """Partial function that takes a callable and returns a tool.""" - name_ = func.get_name() if isinstance(func, Runnable) else func.__name__ - tool_factory = _create_tool_factory(name_) - return tool_factory(func) + msg = ( + f"The first argument must be a string or a callable with a __name__ " + f"for tool decorator. Got {type(name_or_callable)}" + ) + raise ValueError(msg) - return _partial + # Tool is used as a decorator with parameters specified + # @tool(parse_docstring=True) + # def my_tool(): + # pass + def _partial(func: Union[Callable, Runnable]) -> BaseTool: + """Partial function that takes a callable and returns a tool.""" + name_ = func.get_name() if isinstance(func, Runnable) else func.__name__ + tool_factory = _create_tool_factory(name_) + return tool_factory(func) + + return _partial def _get_description_from_runnable(runnable: Runnable) -> str: @@ -408,31 +407,30 @@ def convert_runnable_to_tool( coroutine=runnable.ainvoke, description=description, ) + + async def ainvoke_wrapper( + callbacks: Optional[Callbacks] = None, **kwargs: Any + ) -> Any: + return await runnable.ainvoke(kwargs, config={"callbacks": callbacks}) + + def invoke_wrapper(callbacks: Optional[Callbacks] = None, **kwargs: Any) -> Any: + return runnable.invoke(kwargs, config={"callbacks": callbacks}) + + if ( + arg_types is None + and schema.get("type") == "object" + and schema.get("properties") + ): + args_schema = runnable.input_schema else: - - async def ainvoke_wrapper( - callbacks: Optional[Callbacks] = None, **kwargs: Any - ) -> Any: - return await runnable.ainvoke(kwargs, config={"callbacks": callbacks}) - - def invoke_wrapper(callbacks: Optional[Callbacks] = None, **kwargs: Any) -> Any: - return runnable.invoke(kwargs, config={"callbacks": callbacks}) - - if ( - arg_types is None - and schema.get("type") == "object" - and schema.get("properties") - ): - args_schema = runnable.input_schema - else: - args_schema = _get_schema_from_runnable_and_arg_types( - runnable, name, arg_types=arg_types - ) - - return StructuredTool.from_function( - name=name, - func=invoke_wrapper, - coroutine=ainvoke_wrapper, - description=description, - args_schema=args_schema, + args_schema = _get_schema_from_runnable_and_arg_types( + runnable, name, arg_types=arg_types ) + + return StructuredTool.from_function( + name=name, + func=invoke_wrapper, + coroutine=ainvoke_wrapper, + description=description, + args_schema=args_schema, + ) diff --git a/libs/core/langchain_core/tracers/base.py b/libs/core/langchain_core/tracers/base.py index 2a44655527b..6f01befa020 100644 --- a/libs/core/langchain_core/tracers/base.py +++ b/libs/core/langchain_core/tracers/base.py @@ -183,11 +183,10 @@ class BaseTracer(_TracerCore, BaseCallbackHandler, ABC): Returns: The run. """ - llm_run = self._llm_run_with_retry_event( + return self._llm_run_with_retry_event( retry_state=retry_state, run_id=run_id, ) - return llm_run def on_llm_end(self, response: LLMResult, *, run_id: UUID, **kwargs: Any) -> Run: """End a trace for an LLM run. diff --git a/libs/core/langchain_core/tracers/core.py b/libs/core/langchain_core/tracers/core.py index 4e716a89244..dbf62e1282e 100644 --- a/libs/core/langchain_core/tracers/core.py +++ b/libs/core/langchain_core/tracers/core.py @@ -335,25 +335,23 @@ class _TracerCore(ABC): """Get the inputs for a chain run.""" if self._schema_format in ("original", "original+chat"): return inputs if isinstance(inputs, dict) else {"input": inputs} - elif self._schema_format == "streaming_events": + if self._schema_format == "streaming_events": return { "input": inputs, } - else: - msg = f"Invalid format: {self._schema_format}" - raise ValueError(msg) + msg = f"Invalid format: {self._schema_format}" + raise ValueError(msg) def _get_chain_outputs(self, outputs: Any) -> Any: """Get the outputs for a chain run.""" if self._schema_format in ("original", "original+chat"): return outputs if isinstance(outputs, dict) else {"output": outputs} - elif self._schema_format == "streaming_events": + if self._schema_format == "streaming_events": return { "output": outputs, } - else: - msg = f"Invalid format: {self._schema_format}" - raise ValueError(msg) + msg = f"Invalid format: {self._schema_format}" + raise ValueError(msg) def _complete_chain_run( self, diff --git a/libs/core/langchain_core/tracers/event_stream.py b/libs/core/langchain_core/tracers/event_stream.py index 52f897ba293..7106a281ebd 100644 --- a/libs/core/langchain_core/tracers/event_stream.py +++ b/libs/core/langchain_core/tracers/event_stream.py @@ -78,7 +78,7 @@ def _assign_name(name: Optional[str], serialized: Optional[dict[str, Any]]) -> s if serialized is not None: if "name" in serialized: return serialized["name"] - elif "id" in serialized: + if "id" in serialized: return serialized["id"][-1] return "Unnamed" diff --git a/libs/core/langchain_core/tracers/stdout.py b/libs/core/langchain_core/tracers/stdout.py index c3f5d629f1f..6fd47515fe2 100644 --- a/libs/core/langchain_core/tracers/stdout.py +++ b/libs/core/langchain_core/tracers/stdout.py @@ -91,13 +91,12 @@ class FunctionCallbackHandler(BaseTracer): A string with the breadcrumbs of the run. """ parents = self.get_parents(run)[::-1] - string = " > ".join( + return " > ".join( f"{parent.run_type}:{parent.name}" if i != len(parents) - 1 else f"{parent.run_type}:{parent.name}" for i, parent in enumerate(parents + [run]) ) - return string # logging methods def _on_chain_start(self, run: Run) -> None: diff --git a/libs/core/langchain_core/utils/_merge.py b/libs/core/langchain_core/utils/_merge.py index 806a77a59a3..09542b78392 100644 --- a/libs/core/langchain_core/utils/_merge.py +++ b/libs/core/langchain_core/utils/_merge.py @@ -85,7 +85,7 @@ def merge_lists(left: Optional[list], *others: Optional[list]) -> Optional[list] for other in others: if other is None: continue - elif merged is None: + if merged is None: merged = other.copy() else: for e in other: @@ -131,23 +131,22 @@ def merge_obj(left: Any, right: Any) -> Any: """ if left is None or right is None: return left if left is not None else right - elif type(left) is not type(right): + if type(left) is not type(right): msg = ( f"left and right are of different types. Left type: {type(left)}. Right " f"type: {type(right)}." ) raise TypeError(msg) - elif isinstance(left, str): + if isinstance(left, str): return left + right - elif isinstance(left, dict): + if isinstance(left, dict): return merge_dicts(left, right) - elif isinstance(left, list): + if isinstance(left, list): return merge_lists(left, right) - elif left == right: + if left == right: return left - else: - msg = ( - f"Unable to merge {left=} and {right=}. Both must be of type str, dict, or " - f"list, or else be two equal objects." - ) - raise ValueError(msg) + msg = ( + f"Unable to merge {left=} and {right=}. Both must be of type str, dict, or " + f"list, or else be two equal objects." + ) + raise ValueError(msg) diff --git a/libs/core/langchain_core/utils/env.py b/libs/core/langchain_core/utils/env.py index 6398edc01e7..51c5b9f2194 100644 --- a/libs/core/langchain_core/utils/env.py +++ b/libs/core/langchain_core/utils/env.py @@ -72,12 +72,11 @@ def get_from_env(key: str, env_key: str, default: Optional[str] = None) -> str: """ if env_key in os.environ and os.environ[env_key]: return os.environ[env_key] - elif default is not None: + if default is not None: return default - else: - msg = ( - f"Did not find {key}, please add an environment variable" - f" `{env_key}` which contains it, or pass" - f" `{key}` as a named parameter." - ) - raise ValueError(msg) + msg = ( + f"Did not find {key}, please add an environment variable" + f" `{env_key}` which contains it, or pass" + f" `{key}` as a named parameter." + ) + raise ValueError(msg) diff --git a/libs/core/langchain_core/utils/function_calling.py b/libs/core/langchain_core/utils/function_calling.py index f234bed5556..3d79a3a9773 100644 --- a/libs/core/langchain_core/utils/function_calling.py +++ b/libs/core/langchain_core/utils/function_calling.py @@ -266,9 +266,9 @@ def _convert_any_typed_dicts_to_pydantic( if type_ in visited: return visited[type_] - elif depth >= _MAX_TYPED_DICT_RECURSION: + if depth >= _MAX_TYPED_DICT_RECURSION: return type_ - elif is_typeddict(type_): + if is_typeddict(type_): typed_dict = type_ docstring = inspect.getdoc(typed_dict) annotations_ = typed_dict.__annotations__ @@ -292,7 +292,7 @@ def _convert_any_typed_dicts_to_pydantic( f"type {type(field_desc)}." ) raise ValueError(msg) - elif arg_desc := arg_descriptions.get(arg): + if arg_desc := arg_descriptions.get(arg): field_kwargs["description"] = arg_desc else: pass @@ -309,15 +309,14 @@ def _convert_any_typed_dicts_to_pydantic( model.__doc__ = description visited[typed_dict] = model return model - elif (origin := get_origin(type_)) and (type_args := get_args(type_)): + if (origin := get_origin(type_)) and (type_args := get_args(type_)): subscriptable_origin = _py_38_safe_origin(origin) type_args = tuple( _convert_any_typed_dicts_to_pydantic(arg, depth=depth + 1, visited=visited) for arg in type_args # type: ignore[index] ) return subscriptable_origin[type_args] # type: ignore[index] - else: - return type_ + return type_ def _format_tool_to_openai_function(tool: BaseTool) -> FunctionDescription: @@ -337,33 +336,31 @@ def _format_tool_to_openai_function(tool: BaseTool) -> FunctionDescription: return _convert_json_schema_to_openai_function( tool.tool_call_schema, name=tool.name, description=tool.description ) - elif issubclass(tool.tool_call_schema, (BaseModel, BaseModelV1)): + if issubclass(tool.tool_call_schema, (BaseModel, BaseModelV1)): return _convert_pydantic_to_openai_function( tool.tool_call_schema, name=tool.name, description=tool.description ) - else: - error_msg = ( - f"Unsupported tool call schema: {tool.tool_call_schema}. " - "Tool call schema must be a JSON schema dict or a Pydantic model." - ) - raise ValueError(error_msg) - else: - return { - "name": tool.name, - "description": tool.description, - "parameters": { - # This is a hack to get around the fact that some tools - # do not expose an args_schema, and expect an argument - # which is a string. - # And Open AI does not support an array type for the - # parameters. - "properties": { - "__arg1": {"title": "__arg1", "type": "string"}, - }, - "required": ["__arg1"], - "type": "object", + error_msg = ( + f"Unsupported tool call schema: {tool.tool_call_schema}. " + "Tool call schema must be a JSON schema dict or a Pydantic model." + ) + raise ValueError(error_msg) + return { + "name": tool.name, + "description": tool.description, + "parameters": { + # This is a hack to get around the fact that some tools + # do not expose an args_schema, and expect an argument + # which is a string. + # And Open AI does not support an array type for the + # parameters. + "properties": { + "__arg1": {"title": "__arg1", "type": "string"}, }, - } + "required": ["__arg1"], + "type": "object", + }, + } format_tool_to_openai_function = deprecated( @@ -730,7 +727,7 @@ def _parse_google_docstring( if block.startswith("Args:"): args_block = block break - elif block.startswith(("Returns:", "Example:")): + if block.startswith(("Returns:", "Example:")): # Don't break in case Args come after past_descriptors = True elif not past_descriptors: diff --git a/libs/core/langchain_core/utils/input.py b/libs/core/langchain_core/utils/input.py index 05e9bbcfced..afa3bf758c7 100644 --- a/libs/core/langchain_core/utils/input.py +++ b/libs/core/langchain_core/utils/input.py @@ -26,8 +26,7 @@ def get_color_mapping( colors = list(_TEXT_COLOR_MAPPING.keys()) if excluded_colors is not None: colors = [c for c in colors if c not in excluded_colors] - color_mapping = {item: colors[i % len(colors)] for i, item in enumerate(items)} - return color_mapping + return {item: colors[i % len(colors)] for i, item in enumerate(items)} def get_colored_text(text: str, color: str) -> str: diff --git a/libs/core/langchain_core/utils/json.py b/libs/core/langchain_core/utils/json.py index c9972a6e8d6..3a08d181f35 100644 --- a/libs/core/langchain_core/utils/json.py +++ b/libs/core/langchain_core/utils/json.py @@ -30,15 +30,13 @@ def _custom_parser(multiline_string: str) -> str: if isinstance(multiline_string, (bytes, bytearray)): multiline_string = multiline_string.decode() - multiline_string = re.sub( + return re.sub( r'("action_input"\:\s*")(.*?)(")', _replace_new_line, multiline_string, flags=re.DOTALL, ) - return multiline_string - # Adapted from https://github.com/KillianLucas/open-interpreter/blob/5b6080fae1f8c68938a1e4fa8667e3744084ee21/interpreter/utils/parse_partial_json.py # MIT License diff --git a/libs/core/langchain_core/utils/json_schema.py b/libs/core/langchain_core/utils/json_schema.py index a55ae4b1049..e5b1770cee6 100644 --- a/libs/core/langchain_core/utils/json_schema.py +++ b/libs/core/langchain_core/utils/json_schema.py @@ -60,13 +60,12 @@ def _dereference_refs_helper( else: obj_out[k] = v return obj_out - elif isinstance(obj, list): + if isinstance(obj, list): return [ _dereference_refs_helper(el, full_schema, skip_keys, processed_refs) for el in obj ] - else: - return obj + return obj def _infer_skip_keys( diff --git a/libs/core/langchain_core/utils/mustache.py b/libs/core/langchain_core/utils/mustache.py index ae8205c889d..92592dfe80f 100644 --- a/libs/core/langchain_core/utils/mustache.py +++ b/libs/core/langchain_core/utils/mustache.py @@ -84,8 +84,7 @@ def l_sa_check(template: str, literal: str, is_standalone: bool) -> bool: # Then the next tag could be a standalone # Otherwise it can't be return padding.isspace() or padding == "" - else: - return False + return False def r_sa_check(template: str, tag_type: str, is_standalone: bool) -> bool: @@ -107,8 +106,7 @@ def r_sa_check(template: str, tag_type: str, is_standalone: bool) -> bool: return on_newline[0].isspace() or not on_newline[0] # If we're a tag can't be a standalone - else: - return False + return False def parse_tag(template: str, l_del: str, r_del: str) -> tuple[tuple[str, str], str]: diff --git a/libs/core/langchain_core/utils/pydantic.py b/libs/core/langchain_core/utils/pydantic.py index d7afe6b626b..df698d9f13d 100644 --- a/libs/core/langchain_core/utils/pydantic.py +++ b/libs/core/langchain_core/utils/pydantic.py @@ -89,7 +89,7 @@ def is_pydantic_v1_subclass(cls: type) -> bool: """Check if the installed Pydantic version is 1.x-like.""" if PYDANTIC_MAJOR_VERSION == 1: return True - elif PYDANTIC_MAJOR_VERSION == 2: + if PYDANTIC_MAJOR_VERSION == 2: from pydantic.v1 import BaseModel as BaseModelV1 if issubclass(cls, BaseModelV1): @@ -335,7 +335,7 @@ def _create_subset_model( descriptions=descriptions, fn_description=fn_description, ) - elif PYDANTIC_MAJOR_VERSION == 2: + if PYDANTIC_MAJOR_VERSION == 2: from pydantic.v1 import BaseModel as BaseModelV1 if issubclass(model, BaseModelV1): @@ -346,17 +346,15 @@ def _create_subset_model( descriptions=descriptions, fn_description=fn_description, ) - else: - return _create_subset_model_v2( - name, - model, - field_names, - descriptions=descriptions, - fn_description=fn_description, - ) - else: - msg = f"Unsupported pydantic version: {PYDANTIC_MAJOR_VERSION}" - raise NotImplementedError(msg) + return _create_subset_model_v2( + name, + model, + field_names, + descriptions=descriptions, + fn_description=fn_description, + ) + msg = f"Unsupported pydantic version: {PYDANTIC_MAJOR_VERSION}" + raise NotImplementedError(msg) if PYDANTIC_MAJOR_VERSION == 2: @@ -387,11 +385,10 @@ if PYDANTIC_MAJOR_VERSION == 2: if hasattr(model, "model_fields"): return model.model_fields # type: ignore - elif hasattr(model, "__fields__"): + if hasattr(model, "__fields__"): return model.__fields__ # type: ignore - else: - msg = f"Expected a Pydantic model. Got {type(model)}" - raise TypeError(msg) + msg = f"Expected a Pydantic model. Got {type(model)}" + raise TypeError(msg) elif PYDANTIC_MAJOR_VERSION == 1: from pydantic import BaseModel as BaseModelV1_ diff --git a/libs/core/langchain_core/utils/strings.py b/libs/core/langchain_core/utils/strings.py index aa6199d2bcd..4eeb7ed582e 100644 --- a/libs/core/langchain_core/utils/strings.py +++ b/libs/core/langchain_core/utils/strings.py @@ -14,12 +14,11 @@ def stringify_value(val: Any) -> str: """ if isinstance(val, str): return val - elif isinstance(val, dict): + if isinstance(val, dict): return "\n" + stringify_dict(val) - elif isinstance(val, list): + if isinstance(val, list): return "\n".join(stringify_value(v) for v in val) - else: - return str(val) + return str(val) def stringify_dict(data: dict) -> str: diff --git a/libs/core/langchain_core/utils/utils.py b/libs/core/langchain_core/utils/utils.py index 1a3ad0acb89..fc43c867331 100644 --- a/libs/core/langchain_core/utils/utils.py +++ b/libs/core/langchain_core/utils/utils.py @@ -392,16 +392,14 @@ def from_env( if isinstance(default, (str, type(None))): return default - else: - if error_message: - raise ValueError(error_message) - else: - msg = ( - f"Did not find {key}, please add an environment variable" - f" `{key}` which contains it, or pass" - f" `{key}` as a named parameter." - ) - raise ValueError(msg) + if error_message: + raise ValueError(error_message) + msg = ( + f"Did not find {key}, please add an environment variable" + f" `{key}` which contains it, or pass" + f" `{key}` as a named parameter." + ) + raise ValueError(msg) return get_from_env_fn @@ -454,17 +452,15 @@ def secret_from_env( return SecretStr(os.environ[key]) if isinstance(default, str): return SecretStr(default) - elif default is None: + if default is None: return None - else: - if error_message: - raise ValueError(error_message) - else: - msg = ( - f"Did not find {key}, please add an environment variable" - f" `{key}` which contains it, or pass" - f" `{key}` as a named parameter." - ) - raise ValueError(msg) + if error_message: + raise ValueError(error_message) + msg = ( + f"Did not find {key}, please add an environment variable" + f" `{key}` which contains it, or pass" + f" `{key}` as a named parameter." + ) + raise ValueError(msg) return get_secret_from_env diff --git a/libs/core/langchain_core/vectorstores/base.py b/libs/core/langchain_core/vectorstores/base.py index 4492a4ac9f3..8368a091e08 100644 --- a/libs/core/langchain_core/vectorstores/base.py +++ b/libs/core/langchain_core/vectorstores/base.py @@ -340,20 +340,19 @@ class VectorStore(ABC): """ if search_type == "similarity": return self.similarity_search(query, **kwargs) - elif search_type == "similarity_score_threshold": + if search_type == "similarity_score_threshold": docs_and_similarities = self.similarity_search_with_relevance_scores( query, **kwargs ) return [doc for doc, _ in docs_and_similarities] - elif search_type == "mmr": + if search_type == "mmr": return self.max_marginal_relevance_search(query, **kwargs) - else: - msg = ( - f"search_type of {search_type} not allowed. Expected " - "search_type to be 'similarity', 'similarity_score_threshold'" - " or 'mmr'." - ) - raise ValueError(msg) + msg = ( + f"search_type of {search_type} not allowed. Expected " + "search_type to be 'similarity', 'similarity_score_threshold'" + " or 'mmr'." + ) + raise ValueError(msg) async def asearch( self, query: str, search_type: str, **kwargs: Any @@ -375,19 +374,18 @@ class VectorStore(ABC): """ if search_type == "similarity": return await self.asimilarity_search(query, **kwargs) - elif search_type == "similarity_score_threshold": + if search_type == "similarity_score_threshold": docs_and_similarities = await self.asimilarity_search_with_relevance_scores( query, **kwargs ) return [doc for doc, _ in docs_and_similarities] - elif search_type == "mmr": + if search_type == "mmr": return await self.amax_marginal_relevance_search(query, **kwargs) - else: - msg = ( - f"search_type of {search_type} not allowed. Expected " - "search_type to be 'similarity', 'similarity_score_threshold' or 'mmr'." - ) - raise ValueError(msg) + msg = ( + f"search_type of {search_type} not allowed. Expected " + "search_type to be 'similarity', 'similarity_score_threshold' or 'mmr'." + ) + raise ValueError(msg) @abstractmethod def similarity_search( diff --git a/libs/core/langchain_core/vectorstores/in_memory.py b/libs/core/langchain_core/vectorstores/in_memory.py index a8b9f3e3d3a..47034aa4ec0 100644 --- a/libs/core/langchain_core/vectorstores/in_memory.py +++ b/libs/core/langchain_core/vectorstores/in_memory.py @@ -431,24 +431,22 @@ class InMemoryVectorStore(VectorStore): **kwargs: Any, ) -> list[tuple[Document, float]]: embedding = self.embedding.embed_query(query) - docs = self.similarity_search_with_score_by_vector( + return self.similarity_search_with_score_by_vector( embedding, k, **kwargs, ) - return docs @override async def asimilarity_search_with_score( self, query: str, k: int = 4, **kwargs: Any ) -> list[tuple[Document, float]]: embedding = await self.embedding.aembed_query(query) - docs = self.similarity_search_with_score_by_vector( + return self.similarity_search_with_score_by_vector( embedding, k, **kwargs, ) - return docs @override def similarity_search_by_vector( diff --git a/libs/core/pyproject.toml b/libs/core/pyproject.toml index f2a21616165..9ffa4c7d3cc 100644 --- a/libs/core/pyproject.toml +++ b/libs/core/pyproject.toml @@ -103,7 +103,6 @@ ignore = [ "PGH", "PLR", "PYI", - "RET", "RUF", "SLF", "TD", diff --git a/libs/core/tests/unit_tests/example_selectors/test_length_based_example_selector.py b/libs/core/tests/unit_tests/example_selectors/test_length_based_example_selector.py index db3a88160db..63f406d1b27 100644 --- a/libs/core/tests/unit_tests/example_selectors/test_length_based_example_selector.py +++ b/libs/core/tests/unit_tests/example_selectors/test_length_based_example_selector.py @@ -17,12 +17,11 @@ EXAMPLES = [ def selector() -> LengthBasedExampleSelector: """Get length based selector to use in tests.""" prompts = PromptTemplate(input_variables=["question"], template="{question}") - selector = LengthBasedExampleSelector( + return LengthBasedExampleSelector( examples=EXAMPLES, example_prompt=prompts, max_length=30, ) - return selector def test_selector_valid(selector: LengthBasedExampleSelector) -> None: diff --git a/libs/core/tests/unit_tests/prompts/test_structured.py b/libs/core/tests/unit_tests/prompts/test_structured.py index 9a955fa67b2..e194ac5831f 100644 --- a/libs/core/tests/unit_tests/prompts/test_structured.py +++ b/libs/core/tests/unit_tests/prompts/test_structured.py @@ -18,9 +18,8 @@ def _fake_runnable( ) -> Union[BaseModel, dict]: if isclass(schema) and is_basemodel_subclass(schema): return schema(name="yo", value=value) - else: - params = cast("dict", schema)["parameters"] - return {k: 1 if k != "value" else value for k, v in params.items()} + params = cast("dict", schema)["parameters"] + return {k: 1 if k != "value" else value for k, v in params.items()} class FakeStructuredChatModel(FakeListChatModel): diff --git a/libs/core/tests/unit_tests/runnables/test_graph.py b/libs/core/tests/unit_tests/runnables/test_graph.py index 870c4c76e90..171d8819186 100644 --- a/libs/core/tests/unit_tests/runnables/test_graph.py +++ b/libs/core/tests/unit_tests/runnables/test_graph.py @@ -219,8 +219,7 @@ def test_graph_sequence_map(snapshot: SnapshotAssertion) -> None: def conditional_str_parser(input: str) -> Runnable: if input == "a": return str_parser - else: - return xml_parser + return xml_parser sequence: Runnable = ( prompt diff --git a/libs/core/tests/unit_tests/runnables/test_runnable.py b/libs/core/tests/unit_tests/runnables/test_runnable.py index 054c2c3f855..8309ab128a3 100644 --- a/libs/core/tests/unit_tests/runnables/test_runnable.py +++ b/libs/core/tests/unit_tests/runnables/test_runnable.py @@ -2954,11 +2954,10 @@ def test_higher_order_lambda_runnable( def router(input: dict[str, Any]) -> Runnable: if input["key"] == "math": return itemgetter("input") | math_chain - elif input["key"] == "english": + if input["key"] == "english": return itemgetter("input") | english_chain - else: - msg = f"Unknown key: {input['key']}" - raise ValueError(msg) + msg = f"Unknown key: {input['key']}" + raise ValueError(msg) chain: Runnable = input_map | router assert dumps(chain, pretty=True) == snapshot @@ -3011,11 +3010,10 @@ async def test_higher_order_lambda_runnable_async(mocker: MockerFixture) -> None def router(input: dict[str, Any]) -> Runnable: if input["key"] == "math": return itemgetter("input") | math_chain - elif input["key"] == "english": + if input["key"] == "english": return itemgetter("input") | english_chain - else: - msg = f"Unknown key: {input['key']}" - raise ValueError(msg) + msg = f"Unknown key: {input['key']}" + raise ValueError(msg) chain: Runnable = input_map | router @@ -3034,11 +3032,10 @@ async def test_higher_order_lambda_runnable_async(mocker: MockerFixture) -> None async def arouter(input: dict[str, Any]) -> Runnable: if input["key"] == "math": return itemgetter("input") | math_chain - elif input["key"] == "english": + if input["key"] == "english": return itemgetter("input") | english_chain - else: - msg = f"Unknown key: {input['key']}" - raise ValueError(msg) + msg = f"Unknown key: {input['key']}" + raise ValueError(msg) achain: Runnable = input_map | arouter math_spy = mocker.spy(math_chain.__class__, "ainvoke") @@ -3858,8 +3855,7 @@ def test_recursive_lambda() -> None: def _simple_recursion(x: int) -> Union[int, Runnable]: if x < 10: return RunnableLambda(lambda *args: _simple_recursion(x + 1)) - else: - return x + return x runnable = RunnableLambda(_simple_recursion) assert runnable.invoke(5) == 10 @@ -3873,11 +3869,10 @@ def test_retrying(mocker: MockerFixture) -> None: if x == 1: msg = "x is 1" raise ValueError(msg) - elif x == 2: + if x == 2: msg = "x is 2" raise RuntimeError(msg) - else: - return x + return x _lambda_mock = mocker.Mock(side_effect=_lambda) runnable = RunnableLambda(_lambda_mock) @@ -3938,11 +3933,10 @@ async def test_async_retrying(mocker: MockerFixture) -> None: if x == 1: msg = "x is 1" raise ValueError(msg) - elif x == 2: + if x == 2: msg = "x is 2" raise RuntimeError(msg) - else: - return x + return x _lambda_mock = mocker.Mock(side_effect=_lambda) runnable = RunnableLambda(_lambda_mock) diff --git a/libs/core/tests/unit_tests/runnables/test_runnable_events_v1.py b/libs/core/tests/unit_tests/runnables/test_runnable_events_v1.py index 92835be91ad..9c457b24915 100644 --- a/libs/core/tests/unit_tests/runnables/test_runnable_events_v1.py +++ b/libs/core/tests/unit_tests/runnables/test_runnable_events_v1.py @@ -545,8 +545,7 @@ async def test_astream_events_from_model() -> None: def i_dont_stream(input: Any, config: RunnableConfig) -> Any: if sys.version_info >= (3, 11): return model.invoke(input) - else: - return model.invoke(input, config) + return model.invoke(input, config) events = await _collect_events(i_dont_stream.astream_events("hello", version="v1")) _assert_events_equal_allow_superset_metadata( @@ -670,8 +669,7 @@ async def test_astream_events_from_model() -> None: async def ai_dont_stream(input: Any, config: RunnableConfig) -> Any: if sys.version_info >= (3, 11): return await model.ainvoke(input) - else: - return await model.ainvoke(input, config) + return await model.ainvoke(input, config) events = await _collect_events(ai_dont_stream.astream_events("hello", version="v1")) _assert_events_equal_allow_superset_metadata( diff --git a/libs/core/tests/unit_tests/runnables/test_runnable_events_v2.py b/libs/core/tests/unit_tests/runnables/test_runnable_events_v2.py index 5267159fe3f..6f82a7a44e9 100644 --- a/libs/core/tests/unit_tests/runnables/test_runnable_events_v2.py +++ b/libs/core/tests/unit_tests/runnables/test_runnable_events_v2.py @@ -615,8 +615,7 @@ async def test_astream_with_model_in_chain() -> None: def i_dont_stream(input: Any, config: RunnableConfig) -> Any: if sys.version_info >= (3, 11): return model.invoke(input) - else: - return model.invoke(input, config) + return model.invoke(input, config) events = await _collect_events(i_dont_stream.astream_events("hello", version="v2")) _assert_events_equal_allow_superset_metadata( @@ -724,8 +723,7 @@ async def test_astream_with_model_in_chain() -> None: async def ai_dont_stream(input: Any, config: RunnableConfig) -> Any: if sys.version_info >= (3, 11): return await model.ainvoke(input) - else: - return await model.ainvoke(input, config) + return await model.ainvoke(input, config) events = await _collect_events(ai_dont_stream.astream_events("hello", version="v2")) _assert_events_equal_allow_superset_metadata( diff --git a/libs/core/tests/unit_tests/runnables/test_tracing_interops.py b/libs/core/tests/unit_tests/runnables/test_tracing_interops.py index c083dd03f12..646df61fab0 100644 --- a/libs/core/tests/unit_tests/runnables/test_tracing_interops.py +++ b/libs/core/tests/unit_tests/runnables/test_tracing_interops.py @@ -334,23 +334,22 @@ class TestRunnableSequenceParallelTraceNesting: parent_id_map[n] = matching_post.get("parent_run_id") i += len(name) continue - else: - assert posts[i]["name"] == name - dotted_order = posts[i]["dotted_order"] - if prev_dotted_order is not None and not str( - expected_parents[name] - ).startswith("RunnableParallel"): - assert dotted_order > prev_dotted_order, ( - f"{name} not after {name_order[i - 1]}" - ) - prev_dotted_order = dotted_order - if name in dotted_order_map: - msg = f"Duplicate name {name}" - raise ValueError(msg) - dotted_order_map[name] = dotted_order - id_map[name] = posts[i]["id"] - parent_id_map[name] = posts[i].get("parent_run_id") - i += 1 + assert posts[i]["name"] == name + dotted_order = posts[i]["dotted_order"] + if prev_dotted_order is not None and not str( + expected_parents[name] + ).startswith("RunnableParallel"): + assert dotted_order > prev_dotted_order, ( + f"{name} not after {name_order[i - 1]}" + ) + prev_dotted_order = dotted_order + if name in dotted_order_map: + msg = f"Duplicate name {name}" + raise ValueError(msg) + dotted_order_map[name] = dotted_order + id_map[name] = posts[i]["id"] + parent_id_map[name] = posts[i].get("parent_run_id") + i += 1 # Now check the dotted orders for name, parent_ in expected_parents.items(): diff --git a/libs/core/tests/unit_tests/test_tools.py b/libs/core/tests/unit_tests/test_tools.py index ba187e65b71..e267388cbb3 100644 --- a/libs/core/tests/unit_tests/test_tools.py +++ b/libs/core/tests/unit_tests/test_tools.py @@ -80,8 +80,7 @@ def _get_tool_call_json_schema(tool: BaseTool) -> dict: if hasattr(tool_schema, "model_json_schema"): return tool_schema.model_json_schema() - else: - return tool_schema.schema() + return tool_schema.schema() def test_unnamed_decorator() -> None: diff --git a/libs/core/tests/unit_tests/tracers/test_base_tracer.py b/libs/core/tests/unit_tests/tracers/test_base_tracer.py index 80d7a929749..aaa34a662f2 100644 --- a/libs/core/tests/unit_tests/tracers/test_base_tracer.py +++ b/libs/core/tests/unit_tests/tracers/test_base_tracer.py @@ -599,8 +599,7 @@ def test_tracer_nested_runs_on_error() -> None: def _get_mock_client() -> Client: mock_session = MagicMock() - client = Client(session=mock_session, api_key="test") - return client + return Client(session=mock_session, api_key="test") def test_traceable_to_tracing() -> None: