mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-02 03:26:17 +00:00
Deprecating sql_database access for creating UC functions for agent tools (#29745)
Thank you for contributing to LangChain! - [ ] **PR title**: "package: description" - Where "package" is whichever of langchain, community, core, etc. is being modified. Use "docs: ..." for purely docs changes, "infra: ..." for CI changes. - Example: "community: add foobar LLM" - [ ] **PR message**: ***Delete this entire checklist*** and replace with - **Description:** a description of the change - **Issue:** the issue # it fixes, if applicable - **Dependencies:** any dependencies required for this change - **Twitter handle:** if your PR gets announced, and you'd like a mention, we'll gladly shout you out! - [ ] **Add tests and docs**: If you're adding a new integration, please include 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. - [ ] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. See contribution guidelines for more: https://python.langchain.com/docs/contributing/ Additional guidelines: - Make sure optional dependencies are imported within a function. - Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests. - Most PRs should not touch more than one package. - Changes should be backwards compatible. - If you are adding something to community, do not re-import it in langchain. If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17. --------- Co-authored-by: ccurme <chester.curme@gmail.com>
This commit is contained in:
@@ -103,14 +103,7 @@ See [MLflow LangChain Integration](/docs/integrations/providers/mlflow_tracking)
|
||||
|
||||
SQLDatabase
|
||||
-----------
|
||||
You can connect to Databricks SQL using the SQLDatabase wrapper of LangChain.
|
||||
```
|
||||
from langchain.sql_database import SQLDatabase
|
||||
|
||||
db = SQLDatabase.from_databricks(catalog="samples", schema="nyctaxi")
|
||||
```
|
||||
|
||||
See [Databricks SQL Agent](https://docs.databricks.com/en/large-language-models/langchain.html#databricks-sql-agent) for how to connect Databricks SQL with your LangChain Agent as a powerful querying tool.
|
||||
To connect to Databricks SQL or query structured data, see the [Databricks structured retriever tool documentation](https://docs.databricks.com/en/generative-ai/agent-framework/structured-retrieval-tools.html#table-query-tool) and to create an agent using the above created SQL UDF see [Databricks UC Integration](https://docs.unitycatalog.io/ai/integrations/langchain/).
|
||||
|
||||
Open Models
|
||||
-----------
|
||||
|
Reference in New Issue
Block a user