mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-20 13:54:48 +00:00
community[minor]: Add openvino backend support (#11591)
- **Description:** add openvino backend support by HuggingFace Optimum Intel, - **Dependencies:** “optimum[openvino]”, --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
parent
a89f007947
commit
f61cb8d407
@ -192,6 +192,94 @@
|
||||
"for answer in answers:\n",
|
||||
" print(answer)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "df1d41d9",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Inference with OpenVINO backend\n",
|
||||
"\n",
|
||||
"To deploy a model with OpenVINO, you can specify the `backend=\"openvino\"` parameter to trigger OpenVINO as backend inference framework.\n",
|
||||
"\n",
|
||||
"If you have an Intel GPU, you can specify `model_kwargs={\"device\": \"GPU\"}` to run inference on it."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "efb73dd7-77bf-4436-92e5-51306af45bd7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install --upgrade-strategy eager \"optimum[openvino,nncf]\" --quiet"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "70f6826c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ov_config = {\"PERFORMANCE_HINT\": \"LATENCY\", \"NUM_STREAMS\": \"1\", \"CACHE_DIR\": \"\"}\n",
|
||||
"\n",
|
||||
"ov_llm = HuggingFacePipeline.from_model_id(\n",
|
||||
" model_id=\"gpt2\",\n",
|
||||
" task=\"text-generation\",\n",
|
||||
" backend=\"openvino\",\n",
|
||||
" model_kwargs={\"device\": \"CPU\", \"ov_config\": ov_config},\n",
|
||||
" pipeline_kwargs={\"max_new_tokens\": 10},\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"ov_chain = prompt | ov_llm\n",
|
||||
"\n",
|
||||
"question = \"What is electroencephalography?\"\n",
|
||||
"\n",
|
||||
"print(ov_chain.invoke({\"question\": question}))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "12524837-e9ab-455a-86be-66b95f4f893a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Inference with local OpenVINO model\n",
|
||||
"\n",
|
||||
"It is possible to [export your model](https://github.com/huggingface/optimum-intel?tab=readme-ov-file#export) to the OpenVINO IR format with the CLI, and load the model from local folder.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "3d1104a2-79c7-43a6-aa1c-8076a5ad7747",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!optimum-cli export openvino --model gpt2 ov_model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ac71e60d-5595-454e-8602-03ebb0248205",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ov_llm = HuggingFacePipeline.from_model_id(\n",
|
||||
" model_id=\"ov_model\",\n",
|
||||
" task=\"text-generation\",\n",
|
||||
" backend=\"openvino\",\n",
|
||||
" model_kwargs={\"device\": \"CPU\", \"ov_config\": ov_config},\n",
|
||||
" pipeline_kwargs={\"max_new_tokens\": 10},\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"ov_chain = prompt | ov_llm\n",
|
||||
"\n",
|
||||
"question = \"What is electroencephalography?\"\n",
|
||||
"\n",
|
||||
"print(ov_chain.invoke({\"question\": question}))"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
@ -210,7 +298,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.1"
|
||||
"version": "3.10.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@ -40,6 +40,22 @@ See a [usage example](/docs/integrations/llms/huggingface_pipelines).
|
||||
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
||||
```
|
||||
|
||||
To use the OpenVINO backend in local pipeline wrapper, please install the optimum library and set HuggingFacePipeline's backend as `openvino`:
|
||||
|
||||
```bash
|
||||
pip install --upgrade-strategy eager "optimum[openvino,nncf]"
|
||||
```
|
||||
|
||||
See a [usage example](/docs/integrations/llms/huggingface_pipelines)
|
||||
|
||||
To export your model to the OpenVINO IR format with the CLI:
|
||||
|
||||
```bash
|
||||
optimum-cli export openvino --model gpt2 ov_model
|
||||
```
|
||||
|
||||
To apply [weight-only quantization](https://github.com/huggingface/optimum-intel?tab=readme-ov-file#export) when exporting your model.
|
||||
|
||||
### Hugging Face TextGen Inference
|
||||
|
||||
>[Text Generation Inference](https://github.com/huggingface/text-generation-inference) is
|
||||
|
@ -68,6 +68,7 @@ class HuggingFacePipeline(BaseLLM):
|
||||
cls,
|
||||
model_id: str,
|
||||
task: str,
|
||||
backend: str = "default",
|
||||
device: Optional[int] = -1,
|
||||
device_map: Optional[str] = None,
|
||||
model_kwargs: Optional[dict] = None,
|
||||
@ -95,9 +96,57 @@ class HuggingFacePipeline(BaseLLM):
|
||||
|
||||
try:
|
||||
if task == "text-generation":
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, **_model_kwargs)
|
||||
if backend == "openvino":
|
||||
try:
|
||||
from optimum.intel.openvino import OVModelForCausalLM
|
||||
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import optimum-intel python package. "
|
||||
"Please install it with: "
|
||||
"pip install 'optimum[openvino,nncf]' "
|
||||
)
|
||||
try:
|
||||
# use local model
|
||||
model = OVModelForCausalLM.from_pretrained(
|
||||
model_id, **_model_kwargs
|
||||
)
|
||||
|
||||
except Exception:
|
||||
# use remote model
|
||||
model = OVModelForCausalLM.from_pretrained(
|
||||
model_id, export=True, **_model_kwargs
|
||||
)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_id, **_model_kwargs
|
||||
)
|
||||
elif task in ("text2text-generation", "summarization"):
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(model_id, **_model_kwargs)
|
||||
if backend == "openvino":
|
||||
try:
|
||||
from optimum.intel.openvino import OVModelForSeq2SeqLM
|
||||
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import optimum-intel python package. "
|
||||
"Please install it with: "
|
||||
"pip install 'optimum[openvino,nncf]' "
|
||||
)
|
||||
try:
|
||||
# use local model
|
||||
model = OVModelForSeq2SeqLM.from_pretrained(
|
||||
model_id, **_model_kwargs
|
||||
)
|
||||
|
||||
except Exception:
|
||||
# use remote model
|
||||
model = OVModelForSeq2SeqLM.from_pretrained(
|
||||
model_id, export=True, **_model_kwargs
|
||||
)
|
||||
else:
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(
|
||||
model_id, **_model_kwargs
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Got invalid task {task}, "
|
||||
@ -112,9 +161,13 @@ class HuggingFacePipeline(BaseLLM):
|
||||
tokenizer.pad_token_id = model.config.eos_token_id
|
||||
|
||||
if (
|
||||
(
|
||||
getattr(model, "is_loaded_in_4bit", False)
|
||||
or getattr(model, "is_loaded_in_8bit", False)
|
||||
) and device is not None:
|
||||
)
|
||||
and device is not None
|
||||
and backend == "default"
|
||||
):
|
||||
logger.warning(
|
||||
f"Setting the `device` argument to None from {device} to avoid "
|
||||
"the error caused by attempting to move the model that was already "
|
||||
@ -123,7 +176,11 @@ class HuggingFacePipeline(BaseLLM):
|
||||
)
|
||||
device = None
|
||||
|
||||
if device is not None and importlib.util.find_spec("torch") is not None:
|
||||
if (
|
||||
device is not None
|
||||
and importlib.util.find_spec("torch") is not None
|
||||
and backend == "default"
|
||||
):
|
||||
import torch
|
||||
|
||||
cuda_device_count = torch.cuda.device_count()
|
||||
@ -142,6 +199,8 @@ class HuggingFacePipeline(BaseLLM):
|
||||
"can be a positive integer associated with CUDA device id.",
|
||||
cuda_device_count,
|
||||
)
|
||||
if device is not None and device_map is not None and backend == "openvino":
|
||||
logger.warning("Please set device for OpenVINO through: " "'model_kwargs'")
|
||||
if "trust_remote_code" in _model_kwargs:
|
||||
_model_kwargs = {
|
||||
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
|
||||
|
@ -80,3 +80,45 @@ def test_huggingface_pipeline_runtime_kwargs() -> None:
|
||||
prompt = "Say foo:"
|
||||
output = llm(prompt, pipeline_kwargs={"max_new_tokens": 2})
|
||||
assert len(output) < 10
|
||||
|
||||
|
||||
ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""}
|
||||
|
||||
|
||||
def test_huggingface_pipeline_text_generation_ov() -> None:
|
||||
"""Test valid call to HuggingFace text generation model with openvino."""
|
||||
llm = HuggingFacePipeline.from_model_id(
|
||||
model_id="gpt2",
|
||||
task="text-generation",
|
||||
backend="openvino",
|
||||
model_kwargs={"device": "CPU", "ov_config": ov_config},
|
||||
pipeline_kwargs={"max_new_tokens": 64},
|
||||
)
|
||||
output = llm("Say foo:")
|
||||
assert isinstance(output, str)
|
||||
|
||||
|
||||
def test_huggingface_pipeline_text2text_generation_ov() -> None:
|
||||
"""Test valid call to HuggingFace text2text generation model with openvino."""
|
||||
llm = HuggingFacePipeline.from_model_id(
|
||||
model_id="google/flan-t5-small",
|
||||
task="text2text-generation",
|
||||
backend="openvino",
|
||||
model_kwargs={"device": "CPU", "ov_config": ov_config},
|
||||
pipeline_kwargs={"max_new_tokens": 64},
|
||||
)
|
||||
output = llm("Say foo:")
|
||||
assert isinstance(output, str)
|
||||
|
||||
|
||||
def text_huggingface_pipeline_summarization_ov() -> None:
|
||||
"""Test valid call to HuggingFace summarization model with openvino."""
|
||||
llm = HuggingFacePipeline.from_model_id(
|
||||
model_id="facebook/bart-large-cnn",
|
||||
task="summarization",
|
||||
backend="openvino",
|
||||
model_kwargs={"device": "CPU", "ov_config": ov_config},
|
||||
pipeline_kwargs={"max_new_tokens": 64},
|
||||
)
|
||||
output = llm("Say foo:")
|
||||
assert isinstance(output, str)
|
||||
|
Loading…
Reference in New Issue
Block a user