core[minor]: Support all versions of pydantic base model in argsschema (#24418)

This adds support to any pydantic base model for tools.

The only potential issue is that `get_input_schema()` will not always
return a v1 base model.
This commit is contained in:
Eugene Yurtsev
2024-07-18 17:14:23 -04:00
committed by GitHub
parent b2bc15e640
commit f62b323108
4 changed files with 342 additions and 33 deletions

View File

@@ -31,10 +31,10 @@ from langchain_core.tools import (
StructuredTool,
Tool,
ToolException,
_create_subset_model,
tool,
)
from langchain_core.utils.function_calling import convert_to_openai_function
from langchain_core.utils.pydantic import _create_subset_model
from tests.unit_tests.fake.callbacks import FakeCallbackHandler
@@ -1417,3 +1417,112 @@ def test_tool_injected_arg_with_schema(tool_: BaseTool) -> None:
"required": ["x"],
},
}
def generate_models() -> List[Any]:
"""Generate a list of base models depending on the pydantic version."""
from pydantic import BaseModel as BaseModelProper # pydantic: ignore
class FooProper(BaseModelProper):
a: int
b: str
return [FooProper]
def generate_backwards_compatible_v1() -> List[Any]:
"""Generate a model with pydantic 2 from the v1 namespace."""
from pydantic.v1 import BaseModel as BaseModelV1 # pydantic: ignore
class FooV1Namespace(BaseModelV1):
a: int
b: str
return [FooV1Namespace]
# This generates a list of models that can be used for testing that our APIs
# behave well with either pydantic 1 proper,
# pydantic v1 from pydantic 2,
# or pydantic 2 proper.
TEST_MODELS = generate_models() + generate_backwards_compatible_v1()
@pytest.mark.parametrize("pydantic_model", TEST_MODELS)
def test_args_schema_as_pydantic(pydantic_model: Any) -> None:
class SomeTool(BaseTool):
args_schema: Type[pydantic_model] = pydantic_model
def _run(self, *args: Any, **kwargs: Any) -> str:
return "foo"
tool = SomeTool(
name="some_tool", description="some description", args_schema=pydantic_model
)
assert tool.get_input_schema().schema() == {
"properties": {
"a": {"title": "A", "type": "integer"},
"b": {"title": "B", "type": "string"},
},
"required": ["a", "b"],
"title": pydantic_model.__name__,
"type": "object",
}
assert tool.tool_call_schema.schema() == {
"description": "some description",
"properties": {
"a": {"title": "A", "type": "integer"},
"b": {"title": "B", "type": "string"},
},
"required": ["a", "b"],
"title": "some_tool",
"type": "object",
}
def test_args_schema_explicitly_typed() -> None:
"""This should test that one can type the args schema as a pydantic model.
Please note that this will test using pydantic 2 even though BaseTool
is a pydantic 1 model!
"""
# Check with whatever pydantic model is passed in and not via v1 namespace
from pydantic import BaseModel # pydantic: ignore
class Foo(BaseModel):
a: int
b: str
class SomeTool(BaseTool):
# type ignoring here since we're allowing overriding a type
# signature of pydantic.v1.BaseModel with pydantic.BaseModel
# for pydantic 2!
args_schema: Type[BaseModel] = Foo # type: ignore[assignment]
def _run(self, *args: Any, **kwargs: Any) -> str:
return "foo"
tool = SomeTool(name="some_tool", description="some description")
assert tool.get_input_schema().schema() == {
"properties": {
"a": {"title": "A", "type": "integer"},
"b": {"title": "B", "type": "string"},
},
"required": ["a", "b"],
"title": "Foo",
"type": "object",
}
assert tool.tool_call_schema.schema() == {
"description": "some description",
"properties": {
"a": {"title": "A", "type": "integer"},
"b": {"title": "B", "type": "string"},
},
"required": ["a", "b"],
"title": "some_tool",
"type": "object",
}

View File

@@ -3,7 +3,12 @@
from typing import Any, Dict, Optional
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.utils.pydantic import pre_init
from langchain_core.utils.pydantic import (
PYDANTIC_MAJOR_VERSION,
is_basemodel_instance,
is_basemodel_subclass,
pre_init,
)
def test_pre_init_decorator() -> None:
@@ -73,3 +78,46 @@ def test_with_aliases() -> None:
foo = Foo(y=2) # type: ignore
assert foo.x == 2
assert foo.z == 2
def test_is_basemodel_subclass() -> None:
"""Test pydantic."""
if PYDANTIC_MAJOR_VERSION == 1:
from pydantic import BaseModel as BaseModelV1Proper # pydantic: ignore
assert is_basemodel_subclass(BaseModelV1Proper)
elif PYDANTIC_MAJOR_VERSION == 2:
from pydantic import BaseModel as BaseModelV2 # pydantic: ignore
from pydantic.v1 import BaseModel as BaseModelV1 # pydantic: ignore
assert is_basemodel_subclass(BaseModelV2)
assert is_basemodel_subclass(BaseModelV1)
else:
raise ValueError(f"Unsupported Pydantic version: {PYDANTIC_MAJOR_VERSION}")
def test_is_basemodel_instance() -> None:
"""Test pydantic."""
if PYDANTIC_MAJOR_VERSION == 1:
from pydantic import BaseModel as BaseModelV1Proper # pydantic: ignore
class FooV1(BaseModelV1Proper):
x: int
assert is_basemodel_instance(FooV1(x=5))
elif PYDANTIC_MAJOR_VERSION == 2:
from pydantic import BaseModel as BaseModelV2 # pydantic: ignore
from pydantic.v1 import BaseModel as BaseModelV1 # pydantic: ignore
class Foo(BaseModelV2):
x: int
assert is_basemodel_instance(Foo(x=5))
class Bar(BaseModelV1):
x: int
assert is_basemodel_instance(Bar(x=5))
else:
raise ValueError(f"Unsupported Pydantic version: {PYDANTIC_MAJOR_VERSION}")