mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-25 04:49:17 +00:00
core[minor],community[patch],standard-tests[patch]: Move InMemoryImplementation to langchain-core (#23986)
This PR moves the in memory implementation to langchain-core. * The implementation remains importable from langchain-community. * Supporting utilities are marked as private for now.
This commit is contained in:
@@ -1,249 +1,5 @@
|
||||
import json
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple
|
||||
from langchain_core.vectorstores import InMemoryVectorStore
|
||||
|
||||
import numpy as np
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.indexing import UpsertResponse
|
||||
from langchain_core.load import dumpd, load
|
||||
from langchain_core.vectorstores import VectorStore
|
||||
|
||||
from langchain_community.utils.math import cosine_similarity
|
||||
from langchain_community.vectorstores.utils import maximal_marginal_relevance
|
||||
|
||||
|
||||
class InMemoryVectorStore(VectorStore):
|
||||
"""In-memory implementation of VectorStore using a dictionary.
|
||||
Uses numpy to compute cosine similarity for search.
|
||||
|
||||
Args:
|
||||
embedding: embedding function to use.
|
||||
"""
|
||||
|
||||
def __init__(self, embedding: Embeddings) -> None:
|
||||
self.store: Dict[str, Dict[str, Any]] = {}
|
||||
self.embedding = embedding
|
||||
|
||||
@property
|
||||
def embeddings(self) -> Embeddings:
|
||||
return self.embedding
|
||||
|
||||
def delete(self, ids: Optional[Sequence[str]] = None, **kwargs: Any) -> None:
|
||||
if ids:
|
||||
for _id in ids:
|
||||
self.store.pop(_id, None)
|
||||
|
||||
async def adelete(self, ids: Optional[Sequence[str]] = None, **kwargs: Any) -> None:
|
||||
self.delete(ids)
|
||||
|
||||
def upsert(self, items: Sequence[Document], /, **kwargs: Any) -> UpsertResponse:
|
||||
vectors = self.embedding.embed_documents([item.page_content for item in items])
|
||||
ids = []
|
||||
for item, vector in zip(items, vectors):
|
||||
doc_id = item.id if item.id else str(uuid.uuid4())
|
||||
ids.append(doc_id)
|
||||
self.store[doc_id] = {
|
||||
"id": doc_id,
|
||||
"vector": vector,
|
||||
"text": item.page_content,
|
||||
"metadata": item.metadata,
|
||||
}
|
||||
return {
|
||||
"succeeded": ids,
|
||||
"failed": [],
|
||||
}
|
||||
|
||||
def get_by_ids(self, ids: Sequence[str], /) -> List[Document]:
|
||||
"""Get documents by their ids."""
|
||||
documents = []
|
||||
|
||||
for doc_id in ids:
|
||||
doc = self.store.get(doc_id)
|
||||
if doc:
|
||||
documents.append(
|
||||
Document(
|
||||
id=doc["id"],
|
||||
page_content=doc["text"],
|
||||
metadata=doc["metadata"],
|
||||
)
|
||||
)
|
||||
return documents
|
||||
|
||||
async def aget_by_ids(self, ids: Sequence[str], /) -> List[Document]:
|
||||
return self.get_by_ids(ids)
|
||||
|
||||
async def aadd_texts(
|
||||
self,
|
||||
texts: Iterable[str],
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[str]:
|
||||
return self.add_texts(texts, metadatas, **kwargs)
|
||||
|
||||
def _similarity_search_with_score_by_vector(
|
||||
self,
|
||||
embedding: List[float],
|
||||
k: int = 4,
|
||||
filter: Optional[Callable[[Document], bool]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Tuple[Document, float, List[float]]]:
|
||||
result = []
|
||||
for doc in self.store.values():
|
||||
vector = doc["vector"]
|
||||
similarity = float(cosine_similarity([embedding], [vector]).item(0))
|
||||
result.append(
|
||||
(
|
||||
Document(
|
||||
id=doc["id"], page_content=doc["text"], metadata=doc["metadata"]
|
||||
),
|
||||
similarity,
|
||||
vector,
|
||||
)
|
||||
)
|
||||
result.sort(key=lambda x: x[1], reverse=True)
|
||||
if filter is not None:
|
||||
result = [r for r in result if filter(r[0])]
|
||||
return result[:k]
|
||||
|
||||
def similarity_search_with_score_by_vector(
|
||||
self,
|
||||
embedding: List[float],
|
||||
k: int = 4,
|
||||
filter: Optional[Callable[[Document], bool]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
return [
|
||||
(doc, similarity)
|
||||
for doc, similarity, _ in self._similarity_search_with_score_by_vector(
|
||||
embedding=embedding, k=k, filter=filter, **kwargs
|
||||
)
|
||||
]
|
||||
|
||||
def similarity_search_with_score(
|
||||
self,
|
||||
query: str,
|
||||
k: int = 4,
|
||||
**kwargs: Any,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
embedding = self.embedding.embed_query(query)
|
||||
docs = self.similarity_search_with_score_by_vector(
|
||||
embedding,
|
||||
k,
|
||||
**kwargs,
|
||||
)
|
||||
return docs
|
||||
|
||||
async def asimilarity_search_with_score(
|
||||
self, query: str, k: int = 4, **kwargs: Any
|
||||
) -> List[Tuple[Document, float]]:
|
||||
return self.similarity_search_with_score(query, k, **kwargs)
|
||||
|
||||
def similarity_search_by_vector(
|
||||
self,
|
||||
embedding: List[float],
|
||||
k: int = 4,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
docs_and_scores = self.similarity_search_with_score_by_vector(
|
||||
embedding,
|
||||
k,
|
||||
**kwargs,
|
||||
)
|
||||
return [doc for doc, _ in docs_and_scores]
|
||||
|
||||
async def asimilarity_search_by_vector(
|
||||
self, embedding: List[float], k: int = 4, **kwargs: Any
|
||||
) -> List[Document]:
|
||||
return self.similarity_search_by_vector(embedding, k, **kwargs)
|
||||
|
||||
def similarity_search(
|
||||
self, query: str, k: int = 4, **kwargs: Any
|
||||
) -> List[Document]:
|
||||
return [doc for doc, _ in self.similarity_search_with_score(query, k, **kwargs)]
|
||||
|
||||
async def asimilarity_search(
|
||||
self, query: str, k: int = 4, **kwargs: Any
|
||||
) -> List[Document]:
|
||||
return self.similarity_search(query, k, **kwargs)
|
||||
|
||||
def max_marginal_relevance_search_by_vector(
|
||||
self,
|
||||
embedding: List[float],
|
||||
k: int = 4,
|
||||
fetch_k: int = 20,
|
||||
lambda_mult: float = 0.5,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
prefetch_hits = self._similarity_search_with_score_by_vector(
|
||||
embedding=embedding,
|
||||
k=fetch_k,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
mmr_chosen_indices = maximal_marginal_relevance(
|
||||
np.array(embedding, dtype=np.float32),
|
||||
[vector for _, _, vector in prefetch_hits],
|
||||
k=k,
|
||||
lambda_mult=lambda_mult,
|
||||
)
|
||||
return [prefetch_hits[idx][0] for idx in mmr_chosen_indices]
|
||||
|
||||
def max_marginal_relevance_search(
|
||||
self,
|
||||
query: str,
|
||||
k: int = 4,
|
||||
fetch_k: int = 20,
|
||||
lambda_mult: float = 0.5,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
embedding_vector = self.embedding.embed_query(query)
|
||||
return self.max_marginal_relevance_search_by_vector(
|
||||
embedding_vector,
|
||||
k,
|
||||
fetch_k,
|
||||
lambda_mult=lambda_mult,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_texts(
|
||||
cls,
|
||||
texts: List[str],
|
||||
embedding: Embeddings,
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
**kwargs: Any,
|
||||
) -> "InMemoryVectorStore":
|
||||
store = cls(
|
||||
embedding=embedding,
|
||||
)
|
||||
store.add_texts(texts=texts, metadatas=metadatas, **kwargs)
|
||||
return store
|
||||
|
||||
@classmethod
|
||||
async def afrom_texts(
|
||||
cls,
|
||||
texts: List[str],
|
||||
embedding: Embeddings,
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
**kwargs: Any,
|
||||
) -> "InMemoryVectorStore":
|
||||
return cls.from_texts(texts, embedding, metadatas, **kwargs)
|
||||
|
||||
@classmethod
|
||||
def load(
|
||||
cls, path: str, embedding: Embeddings, **kwargs: Any
|
||||
) -> "InMemoryVectorStore":
|
||||
_path: Path = Path(path)
|
||||
with _path.open("r") as f:
|
||||
store = load(json.load(f))
|
||||
vectorstore = cls(embedding=embedding, **kwargs)
|
||||
vectorstore.store = store
|
||||
return vectorstore
|
||||
|
||||
def dump(self, path: str) -> None:
|
||||
_path: Path = Path(path)
|
||||
_path.parent.mkdir(exist_ok=True, parents=True)
|
||||
with _path.open("w") as f:
|
||||
json.dump(dumpd(self.store), f, indent=2)
|
||||
__all__ = [
|
||||
"InMemoryVectorStore",
|
||||
]
|
||||
|
Reference in New Issue
Block a user