community: Add Baichuan LLM to community (#16724)

Replace this entire comment with:
- **Description:** Add Baichuan LLM to integration/llm, also updated
related docs.

Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
This commit is contained in:
baichuan-assistant 2024-01-30 12:08:24 +08:00 committed by GitHub
parent 1d082359ee
commit f8f2649f12
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 289 additions and 32 deletions

View File

@ -51,10 +51,18 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"or you can set `api_key` in your environment variables\n",
"```bash\n",
"export BAICHUAN_API_KEY=YOUR_API_KEY\n",
"```"
"Alternatively, you can set your API key with:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"BAICHUAN_API_KEY\"] = \"YOUR_API_KEY\""
]
},
{

View File

@ -0,0 +1,97 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Baichuan LLM\n",
"Baichuan Inc. (https://www.baichuan-ai.com/) is a Chinese startup in the era of AGI, dedicated to addressing fundamental human needs: Efficiency, Health, and Happiness."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisite\n",
"An API key is required to access Baichuan LLM API. Visit https://platform.baichuan-ai.com/ to get your API key."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Use Baichuan LLM"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"BAICHUAN_API_KEY\"] = \"YOUR_API_KEY\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.llms import BaichuanLLM\n",
"\n",
"# Load the model\n",
"llm = BaichuanLLM()\n",
"\n",
"res = llm(\"What's your name?\")\n",
"print(res)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"res = llm.generate(prompts=[\"你好!\"])\n",
"res"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for res in llm.stream(\"Who won the second world war?\"):\n",
" print(res)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import asyncio\n",
"\n",
"\n",
"async def run_aio_stream():\n",
" async for res in llm.astream(\"Write a poem about the sun.\"):\n",
" print(res)\n",
"\n",
"\n",
"asyncio.run(run_aio_stream())"
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -6,8 +6,11 @@
Visit us at https://www.baichuan-ai.com/.
Register and get an API key if you are trying out our APIs.
## Baichuan LLM Endpoint
An example is available at [example](/docs/integrations/llms/baichuan)
## Baichuan Chat Model
An example is available at [example](/docs/integrations/chat/baichuan).
## Baichuan Text Embedding Model
An example is available at [example] (/docs/integrations/text_embedding/baichuan)
An example is available at [example](/docs/integrations/text_embedding/baichuan)

View File

@ -6,46 +6,77 @@
"source": [
"# Baichuan Text Embeddings\n",
"\n",
"As of today (Jan 25th, 2024) BaichuanTextEmbeddings ranks #1 in C-MTEB (Chinese Multi-Task Embedding Benchmark) leaderboard.\n",
"\n",
"Leaderboard (Under Overall -> Chinese section): https://huggingface.co/spaces/mteb/leaderboard\n",
"\n",
"As of today (Jan 25th, 2024) BaichuanTextEmbeddings ranks #1 in C-MTEB (Chinese Multi-Task Embedding Benchmark) leaderboard.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Leaderboard (Under Overall -> Chinese section): https://huggingface.co/spaces/mteb/leaderboard"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Official Website: https://platform.baichuan-ai.com/docs/text-Embedding\n",
"An API-key is required to use this embedding model. You can get one by registering at https://platform.baichuan-ai.com/docs/text-Embedding.\n",
"BaichuanTextEmbeddings support 512 token window and preduces vectors with 1024 dimensions. \n",
"\n",
"Please NOTE that BaichuanTextEmbeddings only supports Chinese text embedding. Multi-language support is coming soon.\n"
"An API key is required to use this embedding model. You can get one by registering at https://platform.baichuan-ai.com/docs/text-Embedding."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"BaichuanTextEmbeddings support 512 token window and preduces vectors with 1024 dimensions. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Please NOTE that BaichuanTextEmbeddings only supports Chinese text embedding. Multi-language support is coming soon."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "plaintext"
}
},
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.embeddings import BaichuanTextEmbeddings\n",
"\n",
"# Place your Baichuan API-key here.\n",
"embeddings = BaichuanTextEmbeddings(baichuan_api_key=\"sk-*\")\n",
"\n",
"text_1 = \"今天天气不错\"\n",
"text_2 = \"今天阳光很好\""
"embeddings = BaichuanTextEmbeddings(baichuan_api_key=\"sk-*\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Alternatively, you can set API key this way:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "plaintext"
}
},
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"BAICHUAN_API_KEY\"] = \"YOUR_API_KEY\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text_1 = \"今天天气不错\"\n",
"text_2 = \"今天阳光很好\"\n",
"\n",
"query_result = embeddings.embed_query(text_1)\n",
"query_result"
]
@ -53,11 +84,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "plaintext"
}
},
"metadata": {},
"outputs": [],
"source": [
"doc_result = embeddings.embed_documents([text_1, text_2])\n",

View File

@ -76,6 +76,12 @@ def _import_azureml_endpoint() -> Any:
return AzureMLOnlineEndpoint
def _import_baichuan() -> Any:
from langchain_community.llms.baichuan import BaichuanLLM
return BaichuanLLM
def _import_baidu_qianfan_endpoint() -> Any:
from langchain_community.llms.baidu_qianfan_endpoint import QianfanLLMEndpoint
@ -589,6 +595,8 @@ def __getattr__(name: str) -> Any:
return _import_aviary()
elif name == "AzureMLOnlineEndpoint":
return _import_azureml_endpoint()
elif name == "Baichuan":
return _import_baichuan()
elif name == "QianfanLLMEndpoint":
return _import_baidu_qianfan_endpoint()
elif name == "Banana":

View File

@ -0,0 +1,95 @@
from __future__ import annotations
import json
import logging
from typing import Any, Dict, List, Optional
import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from langchain_community.llms.utils import enforce_stop_tokens
logger = logging.getLogger(__name__)
class BaichuanLLM(LLM):
# TODO: Adding streaming support.
"""Wrapper around Baichuan large language models."""
model: str = "Baichuan2-Turbo-192k"
"""
Other models are available at https://platform.baichuan-ai.com/docs/api.
"""
temperature: float = 0.3
top_p: float = 0.95
timeout: int = 60
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
baichuan_api_host: Optional[str] = None
baichuan_api_key: Optional[SecretStr] = None
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
values["baichuan_api_key"] = convert_to_secret_str(
get_from_dict_or_env(values, "baichuan_api_key", "BAICHUAN_API_KEY")
)
values["baichuan_api_host"] = get_from_dict_or_env(
values,
"baichuan_api_host",
"BAICHUAN_API_HOST",
default="https://api.baichuan-ai.com/v1/chat/completions",
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
return {
"model": self.model,
"temperature": self.temperature,
"top_p": self.top_p,
**self.model_kwargs,
}
def _post(self, request: Any) -> Any:
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.baichuan_api_key.get_secret_value()}",
}
try:
response = requests.post(
self.baichuan_api_host,
headers=headers,
json=request,
timeout=self.timeout,
)
if response.status_code == 200:
parsed_json = json.loads(response.text)
return parsed_json["choices"][0]["message"]["content"]
else:
response.raise_for_status()
except Exception as e:
raise ValueError(f"An error has occurred: {e}")
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
request = self._default_params
request["messages"] = [{"role": "user", "content": prompt}]
request.update(kwargs)
text = self._post(request)
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text
@property
def _llm_type(self) -> str:
"""Return type of chat_model."""
return "baichuan-llm"

View File

@ -0,0 +1,19 @@
"""Test Baichuan LLM Endpoint."""
from langchain_core.outputs import LLMResult
from langchain_community.llms.baichuan import BaichuanLLM
def test_call() -> None:
"""Test valid call to baichuan."""
llm = BaichuanLLM()
output = llm("Who won the second world war?")
assert isinstance(output, str)
def test_generate() -> None:
"""Test valid call to baichuan."""
llm = BaichuanLLM()
output = llm.generate(["Who won the second world war?"])
assert isinstance(output, LLMResult)
assert isinstance(output.generations, list)