mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-06 13:33:37 +00:00
multiple: langchain 0.2 in master (#21191)
0.2rc migrations - [x] Move memory - [x] Move remaining retrievers - [x] graph_qa chains - [x] some dependency from evaluation code potentially on math utils - [x] Move openapi chain from `langchain.chains.api.openapi` to `langchain_community.chains.openapi` - [x] Migrate `langchain.chains.ernie_functions` to `langchain_community.chains.ernie_functions` - [x] migrate `langchain/chains/llm_requests.py` to `langchain_community.chains.llm_requests` - [x] Moving `langchain_community.cross_enoders.base:BaseCrossEncoder` -> `langchain_community.retrievers.document_compressors.cross_encoder:BaseCrossEncoder` (namespace not ideal, but it needs to be moved to `langchain` to avoid circular deps) - [x] unit tests langchain -- add pytest.mark.community to some unit tests that will stay in langchain - [x] unit tests community -- move unit tests that depend on community to community - [x] mv integration tests that depend on community to community - [x] mypy checks Other todo - [x] Make deprecation warnings not noisy (need to use warn deprecated and check that things are implemented properly) - [x] Update deprecation messages with timeline for code removal (likely we actually won't be removing things until 0.4 release) -- will give people more time to transition their code. - [ ] Add information to deprecation warning to show users how to migrate their code base using langchain-cli - [ ] Remove any unnecessary requirements in langchain (e.g., is SQLALchemy required?) --------- Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
241
libs/community/langchain_community/chains/graph_qa/arangodb.py
Normal file
241
libs/community/langchain_community/chains/graph_qa/arangodb.py
Normal file
@@ -0,0 +1,241 @@
|
||||
"""Question answering over a graph."""
|
||||
from __future__ import annotations
|
||||
|
||||
import re
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from langchain.chains.base import Chain
|
||||
from langchain.chains.llm import LLMChain
|
||||
from langchain_core.callbacks import CallbackManagerForChainRun
|
||||
from langchain_core.language_models import BaseLanguageModel
|
||||
from langchain_core.prompts import BasePromptTemplate
|
||||
from langchain_core.pydantic_v1 import Field
|
||||
|
||||
from langchain_community.chains.graph_qa.prompts import (
|
||||
AQL_FIX_PROMPT,
|
||||
AQL_GENERATION_PROMPT,
|
||||
AQL_QA_PROMPT,
|
||||
)
|
||||
from langchain_community.graphs.arangodb_graph import ArangoGraph
|
||||
|
||||
|
||||
class ArangoGraphQAChain(Chain):
|
||||
"""Chain for question-answering against a graph by generating AQL statements.
|
||||
|
||||
*Security note*: Make sure that the database connection uses credentials
|
||||
that are narrowly-scoped to only include necessary permissions.
|
||||
Failure to do so may result in data corruption or loss, since the calling
|
||||
code may attempt commands that would result in deletion, mutation
|
||||
of data if appropriately prompted or reading sensitive data if such
|
||||
data is present in the database.
|
||||
The best way to guard against such negative outcomes is to (as appropriate)
|
||||
limit the permissions granted to the credentials used with this tool.
|
||||
|
||||
See https://python.langchain.com/docs/security for more information.
|
||||
"""
|
||||
|
||||
graph: ArangoGraph = Field(exclude=True)
|
||||
aql_generation_chain: LLMChain
|
||||
aql_fix_chain: LLMChain
|
||||
qa_chain: LLMChain
|
||||
input_key: str = "query" #: :meta private:
|
||||
output_key: str = "result" #: :meta private:
|
||||
|
||||
# Specifies the maximum number of AQL Query Results to return
|
||||
top_k: int = 10
|
||||
|
||||
# Specifies the set of AQL Query Examples that promote few-shot-learning
|
||||
aql_examples: str = ""
|
||||
|
||||
# Specify whether to return the AQL Query in the output dictionary
|
||||
return_aql_query: bool = False
|
||||
|
||||
# Specify whether to return the AQL JSON Result in the output dictionary
|
||||
return_aql_result: bool = False
|
||||
|
||||
# Specify the maximum amount of AQL Generation attempts that should be made
|
||||
max_aql_generation_attempts: int = 3
|
||||
|
||||
@property
|
||||
def input_keys(self) -> List[str]:
|
||||
return [self.input_key]
|
||||
|
||||
@property
|
||||
def output_keys(self) -> List[str]:
|
||||
return [self.output_key]
|
||||
|
||||
@property
|
||||
def _chain_type(self) -> str:
|
||||
return "graph_aql_chain"
|
||||
|
||||
@classmethod
|
||||
def from_llm(
|
||||
cls,
|
||||
llm: BaseLanguageModel,
|
||||
*,
|
||||
qa_prompt: BasePromptTemplate = AQL_QA_PROMPT,
|
||||
aql_generation_prompt: BasePromptTemplate = AQL_GENERATION_PROMPT,
|
||||
aql_fix_prompt: BasePromptTemplate = AQL_FIX_PROMPT,
|
||||
**kwargs: Any,
|
||||
) -> ArangoGraphQAChain:
|
||||
"""Initialize from LLM."""
|
||||
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
|
||||
aql_generation_chain = LLMChain(llm=llm, prompt=aql_generation_prompt)
|
||||
aql_fix_chain = LLMChain(llm=llm, prompt=aql_fix_prompt)
|
||||
|
||||
return cls(
|
||||
qa_chain=qa_chain,
|
||||
aql_generation_chain=aql_generation_chain,
|
||||
aql_fix_chain=aql_fix_chain,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def _call(
|
||||
self,
|
||||
inputs: Dict[str, Any],
|
||||
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Generate an AQL statement from user input, use it retrieve a response
|
||||
from an ArangoDB Database instance, and respond to the user input
|
||||
in natural language.
|
||||
|
||||
Users can modify the following ArangoGraphQAChain Class Variables:
|
||||
|
||||
:var top_k: The maximum number of AQL Query Results to return
|
||||
:type top_k: int
|
||||
|
||||
:var aql_examples: A set of AQL Query Examples that are passed to
|
||||
the AQL Generation Prompt Template to promote few-shot-learning.
|
||||
Defaults to an empty string.
|
||||
:type aql_examples: str
|
||||
|
||||
:var return_aql_query: Whether to return the AQL Query in the
|
||||
output dictionary. Defaults to False.
|
||||
:type return_aql_query: bool
|
||||
|
||||
:var return_aql_result: Whether to return the AQL Query in the
|
||||
output dictionary. Defaults to False
|
||||
:type return_aql_result: bool
|
||||
|
||||
:var max_aql_generation_attempts: The maximum amount of AQL
|
||||
Generation attempts to be made prior to raising the last
|
||||
AQL Query Execution Error. Defaults to 3.
|
||||
:type max_aql_generation_attempts: int
|
||||
"""
|
||||
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
||||
callbacks = _run_manager.get_child()
|
||||
user_input = inputs[self.input_key]
|
||||
|
||||
#########################
|
||||
# Generate AQL Query #
|
||||
aql_generation_output = self.aql_generation_chain.run(
|
||||
{
|
||||
"adb_schema": self.graph.schema,
|
||||
"aql_examples": self.aql_examples,
|
||||
"user_input": user_input,
|
||||
},
|
||||
callbacks=callbacks,
|
||||
)
|
||||
#########################
|
||||
|
||||
aql_query = ""
|
||||
aql_error = ""
|
||||
aql_result = None
|
||||
aql_generation_attempt = 1
|
||||
|
||||
while (
|
||||
aql_result is None
|
||||
and aql_generation_attempt < self.max_aql_generation_attempts + 1
|
||||
):
|
||||
#####################
|
||||
# Extract AQL Query #
|
||||
pattern = r"```(?i:aql)?(.*?)```"
|
||||
matches = re.findall(pattern, aql_generation_output, re.DOTALL)
|
||||
if not matches:
|
||||
_run_manager.on_text(
|
||||
"Invalid Response: ", end="\n", verbose=self.verbose
|
||||
)
|
||||
_run_manager.on_text(
|
||||
aql_generation_output, color="red", end="\n", verbose=self.verbose
|
||||
)
|
||||
raise ValueError(f"Response is Invalid: {aql_generation_output}")
|
||||
|
||||
aql_query = matches[0]
|
||||
#####################
|
||||
|
||||
_run_manager.on_text(
|
||||
f"AQL Query ({aql_generation_attempt}):", verbose=self.verbose
|
||||
)
|
||||
_run_manager.on_text(
|
||||
aql_query, color="green", end="\n", verbose=self.verbose
|
||||
)
|
||||
|
||||
#####################
|
||||
# Execute AQL Query #
|
||||
from arango import AQLQueryExecuteError
|
||||
|
||||
try:
|
||||
aql_result = self.graph.query(aql_query, self.top_k)
|
||||
except AQLQueryExecuteError as e:
|
||||
aql_error = e.error_message
|
||||
|
||||
_run_manager.on_text(
|
||||
"AQL Query Execution Error: ", end="\n", verbose=self.verbose
|
||||
)
|
||||
_run_manager.on_text(
|
||||
aql_error, color="yellow", end="\n\n", verbose=self.verbose
|
||||
)
|
||||
|
||||
########################
|
||||
# Retry AQL Generation #
|
||||
aql_generation_output = self.aql_fix_chain.run(
|
||||
{
|
||||
"adb_schema": self.graph.schema,
|
||||
"aql_query": aql_query,
|
||||
"aql_error": aql_error,
|
||||
},
|
||||
callbacks=callbacks,
|
||||
)
|
||||
########################
|
||||
|
||||
#####################
|
||||
|
||||
aql_generation_attempt += 1
|
||||
|
||||
if aql_result is None:
|
||||
m = f"""
|
||||
Maximum amount of AQL Query Generation attempts reached.
|
||||
Unable to execute the AQL Query due to the following error:
|
||||
{aql_error}
|
||||
"""
|
||||
raise ValueError(m)
|
||||
|
||||
_run_manager.on_text("AQL Result:", end="\n", verbose=self.verbose)
|
||||
_run_manager.on_text(
|
||||
str(aql_result), color="green", end="\n", verbose=self.verbose
|
||||
)
|
||||
|
||||
########################
|
||||
# Interpret AQL Result #
|
||||
result = self.qa_chain(
|
||||
{
|
||||
"adb_schema": self.graph.schema,
|
||||
"user_input": user_input,
|
||||
"aql_query": aql_query,
|
||||
"aql_result": aql_result,
|
||||
},
|
||||
callbacks=callbacks,
|
||||
)
|
||||
########################
|
||||
|
||||
# Return results #
|
||||
result = {self.output_key: result[self.qa_chain.output_key]}
|
||||
|
||||
if self.return_aql_query:
|
||||
result["aql_query"] = aql_query
|
||||
|
||||
if self.return_aql_result:
|
||||
result["aql_result"] = aql_result
|
||||
|
||||
return result
|
Reference in New Issue
Block a user