mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-04 20:46:45 +00:00
multiple: langchain 0.2 in master (#21191)
0.2rc migrations - [x] Move memory - [x] Move remaining retrievers - [x] graph_qa chains - [x] some dependency from evaluation code potentially on math utils - [x] Move openapi chain from `langchain.chains.api.openapi` to `langchain_community.chains.openapi` - [x] Migrate `langchain.chains.ernie_functions` to `langchain_community.chains.ernie_functions` - [x] migrate `langchain/chains/llm_requests.py` to `langchain_community.chains.llm_requests` - [x] Moving `langchain_community.cross_enoders.base:BaseCrossEncoder` -> `langchain_community.retrievers.document_compressors.cross_encoder:BaseCrossEncoder` (namespace not ideal, but it needs to be moved to `langchain` to avoid circular deps) - [x] unit tests langchain -- add pytest.mark.community to some unit tests that will stay in langchain - [x] unit tests community -- move unit tests that depend on community to community - [x] mv integration tests that depend on community to community - [x] mypy checks Other todo - [x] Make deprecation warnings not noisy (need to use warn deprecated and check that things are implemented properly) - [x] Update deprecation messages with timeline for code removal (likely we actually won't be removing things until 0.4 release) -- will give people more time to transition their code. - [ ] Add information to deprecation warning to show users how to migrate their code base using langchain-cli - [ ] Remove any unnecessary requirements in langchain (e.g., is SQLALchemy required?) --------- Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
97
libs/community/langchain_community/chains/llm_requests.py
Normal file
97
libs/community/langchain_community/chains/llm_requests.py
Normal file
@@ -0,0 +1,97 @@
|
||||
"""Chain that hits a URL and then uses an LLM to parse results."""
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from langchain.chains import LLMChain
|
||||
from langchain.chains.base import Chain
|
||||
from langchain_core.callbacks import CallbackManagerForChainRun
|
||||
from langchain_core.pydantic_v1 import Extra, Field, root_validator
|
||||
|
||||
from langchain_community.utilities.requests import TextRequestsWrapper
|
||||
|
||||
DEFAULT_HEADERS = {
|
||||
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36" # noqa: E501
|
||||
}
|
||||
|
||||
|
||||
class LLMRequestsChain(Chain):
|
||||
"""Chain that requests a URL and then uses an LLM to parse results.
|
||||
|
||||
**Security Note**: This chain can make GET requests to arbitrary URLs,
|
||||
including internal URLs.
|
||||
|
||||
Control access to who can run this chain and what network access
|
||||
this chain has.
|
||||
|
||||
See https://python.langchain.com/docs/security for more information.
|
||||
"""
|
||||
|
||||
llm_chain: LLMChain # type: ignore[valid-type]
|
||||
requests_wrapper: TextRequestsWrapper = Field(
|
||||
default_factory=lambda: TextRequestsWrapper(headers=DEFAULT_HEADERS),
|
||||
exclude=True,
|
||||
)
|
||||
text_length: int = 8000
|
||||
requests_key: str = "requests_result" #: :meta private:
|
||||
input_key: str = "url" #: :meta private:
|
||||
output_key: str = "output" #: :meta private:
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
@property
|
||||
def input_keys(self) -> List[str]:
|
||||
"""Will be whatever keys the prompt expects.
|
||||
|
||||
:meta private:
|
||||
"""
|
||||
return [self.input_key]
|
||||
|
||||
@property
|
||||
def output_keys(self) -> List[str]:
|
||||
"""Will always return text key.
|
||||
|
||||
:meta private:
|
||||
"""
|
||||
return [self.output_key]
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
try:
|
||||
from bs4 import BeautifulSoup # noqa: F401
|
||||
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import bs4 python package. "
|
||||
"Please install it with `pip install bs4`."
|
||||
)
|
||||
return values
|
||||
|
||||
def _call(
|
||||
self,
|
||||
inputs: Dict[str, Any],
|
||||
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||||
) -> Dict[str, Any]:
|
||||
from bs4 import BeautifulSoup
|
||||
|
||||
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
||||
# Other keys are assumed to be needed for LLM prediction
|
||||
other_keys = {k: v for k, v in inputs.items() if k != self.input_key}
|
||||
url = inputs[self.input_key]
|
||||
res = self.requests_wrapper.get(url)
|
||||
# extract the text from the html
|
||||
soup = BeautifulSoup(res, "html.parser")
|
||||
other_keys[self.requests_key] = soup.get_text()[: self.text_length]
|
||||
result = self.llm_chain.predict( # type: ignore[attr-defined]
|
||||
callbacks=_run_manager.get_child(), **other_keys
|
||||
)
|
||||
return {self.output_key: result}
|
||||
|
||||
@property
|
||||
def _chain_type(self) -> str:
|
||||
return "llm_requests_chain"
|
Reference in New Issue
Block a user