mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-05 04:55:14 +00:00
multiple: langchain 0.2 in master (#21191)
0.2rc migrations - [x] Move memory - [x] Move remaining retrievers - [x] graph_qa chains - [x] some dependency from evaluation code potentially on math utils - [x] Move openapi chain from `langchain.chains.api.openapi` to `langchain_community.chains.openapi` - [x] Migrate `langchain.chains.ernie_functions` to `langchain_community.chains.ernie_functions` - [x] migrate `langchain/chains/llm_requests.py` to `langchain_community.chains.llm_requests` - [x] Moving `langchain_community.cross_enoders.base:BaseCrossEncoder` -> `langchain_community.retrievers.document_compressors.cross_encoder:BaseCrossEncoder` (namespace not ideal, but it needs to be moved to `langchain` to avoid circular deps) - [x] unit tests langchain -- add pytest.mark.community to some unit tests that will stay in langchain - [x] unit tests community -- move unit tests that depend on community to community - [x] mv integration tests that depend on community to community - [x] mypy checks Other todo - [x] Make deprecation warnings not noisy (need to use warn deprecated and check that things are implemented properly) - [x] Update deprecation messages with timeline for code removal (likely we actually won't be removing things until 0.4 release) -- will give people more time to transition their code. - [ ] Add information to deprecation warning to show users how to migrate their code base using langchain-cli - [ ] Remove any unnecessary requirements in langchain (e.g., is SQLALchemy required?) --------- Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
212
libs/community/tests/unit_tests/test_cache.py
Normal file
212
libs/community/tests/unit_tests/test_cache.py
Normal file
@@ -0,0 +1,212 @@
|
||||
"""Test caching for LLMs and ChatModels."""
|
||||
import sqlite3
|
||||
from typing import Dict, Generator, List, Union
|
||||
|
||||
import pytest
|
||||
from _pytest.fixtures import FixtureRequest
|
||||
from langchain.globals import get_llm_cache, set_llm_cache
|
||||
from langchain_core.caches import InMemoryCache
|
||||
from langchain_core.language_models import FakeListChatModel, FakeListLLM
|
||||
from langchain_core.language_models.chat_models import BaseChatModel
|
||||
from langchain_core.language_models.llms import BaseLLM
|
||||
from langchain_core.load import dumps
|
||||
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
|
||||
from langchain_core.outputs import ChatGeneration, Generation
|
||||
from sqlalchemy import create_engine
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
pytest.importorskip("langchain_community")
|
||||
|
||||
from langchain_community.cache import SQLAlchemyCache # noqa: E402
|
||||
|
||||
|
||||
def get_sqlite_cache() -> SQLAlchemyCache:
|
||||
return SQLAlchemyCache(
|
||||
engine=create_engine(
|
||||
"sqlite://", creator=lambda: sqlite3.connect("file::memory:?cache=shared")
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
CACHE_OPTIONS = [
|
||||
InMemoryCache,
|
||||
get_sqlite_cache,
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True, params=CACHE_OPTIONS)
|
||||
def set_cache_and_teardown(request: FixtureRequest) -> Generator[None, None, None]:
|
||||
# Will be run before each test
|
||||
cache_instance = request.param
|
||||
set_llm_cache(cache_instance())
|
||||
if llm_cache := get_llm_cache():
|
||||
llm_cache.clear()
|
||||
else:
|
||||
raise ValueError("Cache not set. This should never happen.")
|
||||
|
||||
yield
|
||||
|
||||
# Will be run after each test
|
||||
if llm_cache:
|
||||
llm_cache.clear()
|
||||
set_llm_cache(None)
|
||||
else:
|
||||
raise ValueError("Cache not set. This should never happen.")
|
||||
|
||||
|
||||
async def test_llm_caching() -> None:
|
||||
prompt = "How are you?"
|
||||
response = "Test response"
|
||||
cached_response = "Cached test response"
|
||||
llm = FakeListLLM(responses=[response])
|
||||
if llm_cache := get_llm_cache():
|
||||
# sync test
|
||||
llm_cache.update(
|
||||
prompt=prompt,
|
||||
llm_string=create_llm_string(llm),
|
||||
return_val=[Generation(text=cached_response)],
|
||||
)
|
||||
assert llm.invoke(prompt) == cached_response
|
||||
# async test
|
||||
await llm_cache.aupdate(
|
||||
prompt=prompt,
|
||||
llm_string=create_llm_string(llm),
|
||||
return_val=[Generation(text=cached_response)],
|
||||
)
|
||||
assert await llm.ainvoke(prompt) == cached_response
|
||||
else:
|
||||
raise ValueError(
|
||||
"The cache not set. This should never happen, as the pytest fixture "
|
||||
"`set_cache_and_teardown` always sets the cache."
|
||||
)
|
||||
|
||||
|
||||
def test_old_sqlite_llm_caching() -> None:
|
||||
llm_cache = get_llm_cache()
|
||||
if isinstance(llm_cache, SQLAlchemyCache):
|
||||
prompt = "How are you?"
|
||||
response = "Test response"
|
||||
cached_response = "Cached test response"
|
||||
llm = FakeListLLM(responses=[response])
|
||||
items = [
|
||||
llm_cache.cache_schema(
|
||||
prompt=prompt,
|
||||
llm=create_llm_string(llm),
|
||||
response=cached_response,
|
||||
idx=0,
|
||||
)
|
||||
]
|
||||
with Session(llm_cache.engine) as session, session.begin():
|
||||
for item in items:
|
||||
session.merge(item)
|
||||
assert llm.invoke(prompt) == cached_response
|
||||
|
||||
|
||||
async def test_chat_model_caching() -> None:
|
||||
prompt: List[BaseMessage] = [HumanMessage(content="How are you?")]
|
||||
response = "Test response"
|
||||
cached_response = "Cached test response"
|
||||
cached_message = AIMessage(content=cached_response)
|
||||
llm = FakeListChatModel(responses=[response])
|
||||
if llm_cache := get_llm_cache():
|
||||
# sync test
|
||||
llm_cache.update(
|
||||
prompt=dumps(prompt),
|
||||
llm_string=llm._get_llm_string(),
|
||||
return_val=[ChatGeneration(message=cached_message)],
|
||||
)
|
||||
result = llm.invoke(prompt)
|
||||
assert isinstance(result, AIMessage)
|
||||
assert result.content == cached_response
|
||||
|
||||
# async test
|
||||
await llm_cache.aupdate(
|
||||
prompt=dumps(prompt),
|
||||
llm_string=llm._get_llm_string(),
|
||||
return_val=[ChatGeneration(message=cached_message)],
|
||||
)
|
||||
result = await llm.ainvoke(prompt)
|
||||
assert isinstance(result, AIMessage)
|
||||
assert result.content == cached_response
|
||||
else:
|
||||
raise ValueError(
|
||||
"The cache not set. This should never happen, as the pytest fixture "
|
||||
"`set_cache_and_teardown` always sets the cache."
|
||||
)
|
||||
|
||||
|
||||
async def test_chat_model_caching_params() -> None:
|
||||
prompt: List[BaseMessage] = [HumanMessage(content="How are you?")]
|
||||
response = "Test response"
|
||||
cached_response = "Cached test response"
|
||||
cached_message = AIMessage(content=cached_response)
|
||||
llm = FakeListChatModel(responses=[response])
|
||||
if llm_cache := get_llm_cache():
|
||||
# sync test
|
||||
llm_cache.update(
|
||||
prompt=dumps(prompt),
|
||||
llm_string=llm._get_llm_string(functions=[]),
|
||||
return_val=[ChatGeneration(message=cached_message)],
|
||||
)
|
||||
result = llm.invoke(prompt, functions=[])
|
||||
result_no_params = llm.invoke(prompt)
|
||||
assert isinstance(result, AIMessage)
|
||||
assert result.content == cached_response
|
||||
assert isinstance(result_no_params, AIMessage)
|
||||
assert result_no_params.content == response
|
||||
|
||||
# async test
|
||||
await llm_cache.aupdate(
|
||||
prompt=dumps(prompt),
|
||||
llm_string=llm._get_llm_string(functions=[]),
|
||||
return_val=[ChatGeneration(message=cached_message)],
|
||||
)
|
||||
result = await llm.ainvoke(prompt, functions=[])
|
||||
result_no_params = await llm.ainvoke(prompt)
|
||||
assert isinstance(result, AIMessage)
|
||||
assert result.content == cached_response
|
||||
assert isinstance(result_no_params, AIMessage)
|
||||
assert result_no_params.content == response
|
||||
else:
|
||||
raise ValueError(
|
||||
"The cache not set. This should never happen, as the pytest fixture "
|
||||
"`set_cache_and_teardown` always sets the cache."
|
||||
)
|
||||
|
||||
|
||||
async def test_llm_cache_clear() -> None:
|
||||
prompt = "How are you?"
|
||||
expected_response = "Test response"
|
||||
cached_response = "Cached test response"
|
||||
llm = FakeListLLM(responses=[expected_response])
|
||||
if llm_cache := get_llm_cache():
|
||||
# sync test
|
||||
llm_cache.update(
|
||||
prompt=prompt,
|
||||
llm_string=create_llm_string(llm),
|
||||
return_val=[Generation(text=cached_response)],
|
||||
)
|
||||
llm_cache.clear()
|
||||
response = llm.invoke(prompt)
|
||||
assert response == expected_response
|
||||
|
||||
# async test
|
||||
await llm_cache.aupdate(
|
||||
prompt=prompt,
|
||||
llm_string=create_llm_string(llm),
|
||||
return_val=[Generation(text=cached_response)],
|
||||
)
|
||||
await llm_cache.aclear()
|
||||
response = await llm.ainvoke(prompt)
|
||||
assert response == expected_response
|
||||
else:
|
||||
raise ValueError(
|
||||
"The cache not set. This should never happen, as the pytest fixture "
|
||||
"`set_cache_and_teardown` always sets the cache."
|
||||
)
|
||||
|
||||
|
||||
def create_llm_string(llm: Union[BaseLLM, BaseChatModel]) -> str:
|
||||
_dict: Dict = llm.dict()
|
||||
_dict["stop"] = None
|
||||
return str(sorted([(k, v) for k, v in _dict.items()]))
|
Reference in New Issue
Block a user