mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-01 04:29:09 +00:00
Implement max_marginal_relevance_search
in VectorStore
of Pinecone (#6056)
This adds implementation of MMR search in pinecone; and I have two semi-related observations about this vector store class: - Maybe we should also have a `similarity_search_by_vector_returning_embeddings` like in supabase, but it's not in the base `VectorStore` class so I didn't implement - Talking about the base class, there's `similarity_search_with_relevance_scores`, but in pinecone it is called `similarity_search_with_score`; maybe we should consider renaming it to align with other `VectorStore` base and sub classes (or add that as an alias for backward compatibility) #### Who can review? Tag maintainers/contributors who might be interested: - VectorStores / Retrievers / Memory - @dev2049
This commit is contained in:
parent
970b2f9d38
commit
f9edf76e7c
@ -24,7 +24,7 @@
|
|||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"!pip install pinecone-client"
|
"!pip install pinecone-client openai tiktoken"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -70,7 +70,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 2,
|
"execution_count": null,
|
||||||
"id": "aac9563e",
|
"id": "aac9563e",
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"tags": []
|
"tags": []
|
||||||
@ -85,7 +85,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 2,
|
"execution_count": null,
|
||||||
"id": "a3c3999a",
|
"id": "a3c3999a",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@ -135,13 +135,51 @@
|
|||||||
"print(docs[0].page_content)"
|
"print(docs[0].page_content)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "d46d1452",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Maximal Marginal Relevance Searches\n",
|
||||||
|
"\n",
|
||||||
|
"In addition to using similarity search in the retriever object, you can also use `mmr` as retriever.\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"id": "a359ed74",
|
"id": "a359ed74",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": []
|
"source": [
|
||||||
|
"retriever = docsearch.as_retriever(search_type=\"mmr\")\n",
|
||||||
|
"matched_docs = retriever.get_relevant_documents(query)\n",
|
||||||
|
"for i, d in enumerate(matched_docs):\n",
|
||||||
|
" print(f\"\\n## Document {i}\\n\")\n",
|
||||||
|
" print(d.page_content)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "7c477287",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Or use `max_marginal_relevance_search` directly:"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "9ca82740",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"found_docs = docsearch.max_marginal_relevance_search(query, k=2, fetch_k=10)\n",
|
||||||
|
"for i, doc in enumerate(found_docs):\n",
|
||||||
|
" print(f\"{i + 1}.\", doc.page_content, \"\\n\")"
|
||||||
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
|
@ -5,9 +5,12 @@ import logging
|
|||||||
import uuid
|
import uuid
|
||||||
from typing import Any, Callable, Iterable, List, Optional, Tuple
|
from typing import Any, Callable, Iterable, List, Optional, Tuple
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
from langchain.docstore.document import Document
|
from langchain.docstore.document import Document
|
||||||
from langchain.embeddings.base import Embeddings
|
from langchain.embeddings.base import Embeddings
|
||||||
from langchain.vectorstores.base import VectorStore
|
from langchain.vectorstores.base import VectorStore
|
||||||
|
from langchain.vectorstores.utils import maximal_marginal_relevance
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@ -157,6 +160,85 @@ class Pinecone(VectorStore):
|
|||||||
)
|
)
|
||||||
return [doc for doc, _ in docs_and_scores]
|
return [doc for doc, _ in docs_and_scores]
|
||||||
|
|
||||||
|
def max_marginal_relevance_search_by_vector(
|
||||||
|
self,
|
||||||
|
embedding: List[float],
|
||||||
|
k: int = 4,
|
||||||
|
fetch_k: int = 20,
|
||||||
|
lambda_mult: float = 0.5,
|
||||||
|
filter: Optional[dict] = None,
|
||||||
|
namespace: Optional[str] = None,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> List[Document]:
|
||||||
|
"""Return docs selected using the maximal marginal relevance.
|
||||||
|
|
||||||
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
||||||
|
among selected documents.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
embedding: Embedding to look up documents similar to.
|
||||||
|
k: Number of Documents to return. Defaults to 4.
|
||||||
|
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
||||||
|
lambda_mult: Number between 0 and 1 that determines the degree
|
||||||
|
of diversity among the results with 0 corresponding
|
||||||
|
to maximum diversity and 1 to minimum diversity.
|
||||||
|
Defaults to 0.5.
|
||||||
|
Returns:
|
||||||
|
List of Documents selected by maximal marginal relevance.
|
||||||
|
"""
|
||||||
|
if namespace is None:
|
||||||
|
namespace = self._namespace
|
||||||
|
results = self._index.query(
|
||||||
|
[embedding],
|
||||||
|
top_k=fetch_k,
|
||||||
|
include_values=True,
|
||||||
|
include_metadata=True,
|
||||||
|
namespace=namespace,
|
||||||
|
filter=filter,
|
||||||
|
)
|
||||||
|
mmr_selected = maximal_marginal_relevance(
|
||||||
|
np.array([embedding], dtype=np.float32),
|
||||||
|
[item["values"] for item in results["matches"]],
|
||||||
|
k=k,
|
||||||
|
lambda_mult=lambda_mult,
|
||||||
|
)
|
||||||
|
selected = [results["matches"][i]["metadata"] for i in mmr_selected]
|
||||||
|
return [
|
||||||
|
Document(page_content=metadata.pop((self._text_key)), metadata=metadata)
|
||||||
|
for metadata in selected
|
||||||
|
]
|
||||||
|
|
||||||
|
def max_marginal_relevance_search(
|
||||||
|
self,
|
||||||
|
query: str,
|
||||||
|
k: int = 4,
|
||||||
|
fetch_k: int = 20,
|
||||||
|
lambda_mult: float = 0.5,
|
||||||
|
filter: Optional[dict] = None,
|
||||||
|
namespace: Optional[str] = None,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> List[Document]:
|
||||||
|
"""Return docs selected using the maximal marginal relevance.
|
||||||
|
|
||||||
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
||||||
|
among selected documents.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
query: Text to look up documents similar to.
|
||||||
|
k: Number of Documents to return. Defaults to 4.
|
||||||
|
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
||||||
|
lambda_mult: Number between 0 and 1 that determines the degree
|
||||||
|
of diversity among the results with 0 corresponding
|
||||||
|
to maximum diversity and 1 to minimum diversity.
|
||||||
|
Defaults to 0.5.
|
||||||
|
Returns:
|
||||||
|
List of Documents selected by maximal marginal relevance.
|
||||||
|
"""
|
||||||
|
embedding = self._embedding_function(query)
|
||||||
|
return self.max_marginal_relevance_search_by_vector(
|
||||||
|
embedding, k, fetch_k, lambda_mult, filter, namespace
|
||||||
|
)
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def from_texts(
|
def from_texts(
|
||||||
cls,
|
cls,
|
||||||
|
Loading…
Reference in New Issue
Block a user