mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-01 11:02:37 +00:00
docs, experimental[patch], langchain[patch], community[patch]: update storage imports (#15429)
ran ```bash g grep -l "langchain.vectorstores" | xargs -L 1 sed -i '' "s/langchain\.vectorstores/langchain_community.vectorstores/g" g grep -l "langchain.document_loaders" | xargs -L 1 sed -i '' "s/langchain\.document_loaders/langchain_community.document_loaders/g" g grep -l "langchain.chat_loaders" | xargs -L 1 sed -i '' "s/langchain\.chat_loaders/langchain_community.chat_loaders/g" g grep -l "langchain.document_transformers" | xargs -L 1 sed -i '' "s/langchain\.document_transformers/langchain_community.document_transformers/g" g grep -l "langchain\.graphs" | xargs -L 1 sed -i '' "s/langchain\.graphs/langchain_community.graphs/g" g grep -l "langchain\.memory\.chat_message_histories" | xargs -L 1 sed -i '' "s/langchain\.memory\.chat_message_histories/langchain_community.chat_message_histories/g" gco master libs/langchain/tests/unit_tests/*/test_imports.py gco master libs/langchain/tests/unit_tests/**/test_public_api.py ```
This commit is contained in:
@@ -101,7 +101,7 @@
|
||||
"If you want to use the provided folder, then simply opt for a [pdf loader](https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf) for the document:\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"from langchain.document_loaders import PyPDFLoader\n",
|
||||
"from langchain_community.document_loaders import PyPDFLoader\n",
|
||||
"loader = PyPDFLoader(path + fname)\n",
|
||||
"docs = loader.load()\n",
|
||||
"tables = [] # Ignore w/ basic pdf loader\n",
|
||||
@@ -355,8 +355,8 @@
|
||||
"\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_community.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"\n",
|
||||
|
@@ -93,7 +93,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.document_loaders import PyPDFLoader\n",
|
||||
"from langchain_community.document_loaders import PyPDFLoader\n",
|
||||
"\n",
|
||||
"loader = PyPDFLoader(\"./cj/cj.pdf\")\n",
|
||||
"docs = loader.load()\n",
|
||||
@@ -344,8 +344,8 @@
|
||||
"\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_community.embeddings import VertexAIEmbeddings\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"\n",
|
||||
|
@@ -320,8 +320,8 @@
|
||||
"\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_community.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"# The vectorstore to use to index the child chunks\n",
|
||||
|
@@ -375,8 +375,8 @@
|
||||
"\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_community.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"# The vectorstore to use to index the child chunks\n",
|
||||
|
@@ -378,8 +378,8 @@
|
||||
"\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_community.embeddings import GPT4AllEmbeddings\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"# The vectorstore to use to index the child chunks\n",
|
||||
|
@@ -62,7 +62,7 @@
|
||||
"path = \"/Users/rlm/Desktop/cpi/\"\n",
|
||||
"\n",
|
||||
"# Load\n",
|
||||
"from langchain.document_loaders import PyPDFLoader\n",
|
||||
"from langchain_community.document_loaders import PyPDFLoader\n",
|
||||
"\n",
|
||||
"loader = PyPDFLoader(path + \"cpi.pdf\")\n",
|
||||
"pdf_pages = loader.load()\n",
|
||||
@@ -132,8 +132,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_community.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"\n",
|
||||
"baseline = Chroma.from_texts(\n",
|
||||
" texts=all_splits_pypdf_texts,\n",
|
||||
|
@@ -29,9 +29,9 @@
|
||||
"source": [
|
||||
"from langchain.chains import RetrievalQA\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_community.embeddings.openai import OpenAIEmbeddings\n",
|
||||
"from langchain_community.llms import OpenAI\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"\n",
|
||||
"llm = OpenAI(temperature=0)"
|
||||
]
|
||||
@@ -69,7 +69,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.document_loaders import TextLoader\n",
|
||||
"from langchain_community.document_loaders import TextLoader\n",
|
||||
"\n",
|
||||
"loader = TextLoader(doc_path)\n",
|
||||
"documents = loader.load()\n",
|
||||
@@ -99,7 +99,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.document_loaders import WebBaseLoader"
|
||||
"from langchain_community.document_loaders import WebBaseLoader"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@@ -62,8 +62,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.docstore import InMemoryDocstore\n",
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"from langchain_community.embeddings import OpenAIEmbeddings"
|
||||
"from langchain_community.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain_community.vectorstores import FAISS"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -167,7 +167,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.memory.chat_message_histories import FileChatMessageHistory\n",
|
||||
"from langchain_community.chat_message_histories import FileChatMessageHistory\n",
|
||||
"\n",
|
||||
"agent = AutoGPT.from_llm_and_tools(\n",
|
||||
" ai_name=\"Tom\",\n",
|
||||
|
@@ -311,8 +311,8 @@
|
||||
"# Memory\n",
|
||||
"import faiss\n",
|
||||
"from langchain.docstore import InMemoryDocstore\n",
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"from langchain_community.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain_community.vectorstores import FAISS\n",
|
||||
"\n",
|
||||
"embeddings_model = OpenAIEmbeddings()\n",
|
||||
"embedding_size = 1536\n",
|
||||
|
@@ -54,7 +54,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.docstore import InMemoryDocstore\n",
|
||||
"from langchain.vectorstores import FAISS"
|
||||
"from langchain_community.vectorstores import FAISS"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@@ -63,7 +63,7 @@
|
||||
"%pip install faiss-cpu > /dev/null\n",
|
||||
"%pip install google-search-results > /dev/null\n",
|
||||
"from langchain.docstore import InMemoryDocstore\n",
|
||||
"from langchain.vectorstores import FAISS"
|
||||
"from langchain_community.vectorstores import FAISS"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@@ -23,9 +23,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"1. Prepare data:\n",
|
||||
" 1. Upload all python project files using the `langchain.document_loaders.TextLoader`. We will call these files the **documents**.\n",
|
||||
" 1. Upload all python project files using the `langchain_community.document_loaders.TextLoader`. We will call these files the **documents**.\n",
|
||||
" 2. Split all documents to chunks using the `langchain.text_splitter.CharacterTextSplitter`.\n",
|
||||
" 3. Embed chunks and upload them into the DeepLake using `langchain.embeddings.openai.OpenAIEmbeddings` and `langchain.vectorstores.DeepLake`\n",
|
||||
" 3. Embed chunks and upload them into the DeepLake using `langchain.embeddings.openai.OpenAIEmbeddings` and `langchain_community.vectorstores.DeepLake`\n",
|
||||
"2. Question-Answering:\n",
|
||||
" 1. Build a chain from `langchain.chat_models.ChatOpenAI` and `langchain.chains.ConversationalRetrievalChain`\n",
|
||||
" 2. Prepare questions.\n",
|
||||
@@ -166,7 +166,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.document_loaders import TextLoader\n",
|
||||
"from langchain_community.document_loaders import TextLoader\n",
|
||||
"\n",
|
||||
"root_dir = \"../../../../../../libs\"\n",
|
||||
"\n",
|
||||
@@ -706,7 +706,7 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"<langchain.vectorstores.deeplake.DeepLake at 0x7fe1b67d7a30>"
|
||||
"<langchain_community.vectorstores.deeplake.DeepLake at 0x7fe1b67d7a30>"
|
||||
]
|
||||
},
|
||||
"execution_count": 15,
|
||||
@@ -715,7 +715,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.vectorstores import DeepLake\n",
|
||||
"from langchain_community.vectorstores import DeepLake\n",
|
||||
"\n",
|
||||
"username = \"<USERNAME_OR_ORG>\"\n",
|
||||
"\n",
|
||||
@@ -740,7 +740,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# from langchain.vectorstores import DeepLake\n",
|
||||
"# from langchain_community.vectorstores import DeepLake\n",
|
||||
"\n",
|
||||
"# db = DeepLake.from_documents(\n",
|
||||
"# texts, embeddings, dataset_path=f\"hub://{<org_id>}/langchain-code\", runtime={\"tensor_db\": True}\n",
|
||||
|
@@ -115,8 +115,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema import Document\n",
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"from langchain_community.embeddings import OpenAIEmbeddings"
|
||||
"from langchain_community.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain_community.vectorstores import FAISS"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@@ -139,8 +139,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema import Document\n",
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"from langchain_community.embeddings import OpenAIEmbeddings"
|
||||
"from langchain_community.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain_community.vectorstores import FAISS"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@@ -104,8 +104,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema import Document\n",
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"from langchain_community.embeddings import OpenAIEmbeddings"
|
||||
"from langchain_community.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain_community.vectorstores import FAISS"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@@ -56,9 +56,9 @@
|
||||
" CharacterTextSplitter,\n",
|
||||
" RecursiveCharacterTextSplitter,\n",
|
||||
")\n",
|
||||
"from langchain.vectorstores import DeepLake\n",
|
||||
"from langchain_community.embeddings.openai import OpenAIEmbeddings\n",
|
||||
"from langchain_community.llms import OpenAI\n",
|
||||
"from langchain_community.vectorstores import DeepLake\n",
|
||||
"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n",
|
||||
"activeloop_token = getpass.getpass(\"Activeloop Token:\")\n",
|
||||
|
@@ -547,8 +547,8 @@
|
||||
"\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain.vectorstores.chroma import Chroma\n",
|
||||
"from langchain_community.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain_community.vectorstores.chroma import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"\n",
|
||||
|
@@ -49,9 +49,9 @@
|
||||
"\n",
|
||||
"from langchain.docstore import InMemoryDocstore\n",
|
||||
"from langchain.retrievers import TimeWeightedVectorStoreRetriever\n",
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"from langchain_community.chat_models import ChatOpenAI\n",
|
||||
"from langchain_community.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain_community.vectorstores import FAISS\n",
|
||||
"from termcolor import colored"
|
||||
]
|
||||
},
|
||||
|
@@ -172,7 +172,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"\n",
|
||||
"with open(\"../../state_of_the_union.txt\") as f:\n",
|
||||
" state_of_the_union = f.read()\n",
|
||||
|
@@ -187,7 +187,7 @@
|
||||
"\n",
|
||||
"import chromadb\n",
|
||||
"import numpy as np\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_experimental.open_clip import OpenCLIPEmbeddings\n",
|
||||
"from PIL import Image as _PILImage\n",
|
||||
"\n",
|
||||
|
@@ -20,10 +20,10 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chains import RetrievalQA\n",
|
||||
"from langchain.document_loaders import TextLoader\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_community.embeddings.openai import OpenAIEmbeddings"
|
||||
"from langchain_community.document_loaders import TextLoader\n",
|
||||
"from langchain_community.embeddings.openai import OpenAIEmbeddings\n",
|
||||
"from langchain_community.vectorstores import Chroma"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@@ -59,11 +59,13 @@
|
||||
"from baidubce.auth.bce_credentials import BceCredentials\n",
|
||||
"from baidubce.bce_client_configuration import BceClientConfiguration\n",
|
||||
"from langchain.chains.retrieval_qa import RetrievalQA\n",
|
||||
"from langchain.document_loaders.baiducloud_bos_directory import BaiduBOSDirectoryLoader\n",
|
||||
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
||||
"from langchain.vectorstores import BESVectorStore\n",
|
||||
"from langchain_community.document_loaders.baiducloud_bos_directory import (\n",
|
||||
" BaiduBOSDirectoryLoader,\n",
|
||||
")\n",
|
||||
"from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings\n",
|
||||
"from langchain_community.llms.baidu_qianfan_endpoint import QianfanLLMEndpoint"
|
||||
"from langchain_community.llms.baidu_qianfan_endpoint import QianfanLLMEndpoint\n",
|
||||
"from langchain_community.vectorstores import BESVectorStore"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@@ -30,8 +30,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pinecone\n",
|
||||
"from langchain.vectorstores import Pinecone\n",
|
||||
"from langchain_community.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain_community.vectorstores import Pinecone\n",
|
||||
"\n",
|
||||
"pinecone.init(api_key=\"...\", environment=\"...\")"
|
||||
]
|
||||
|
@@ -53,10 +53,10 @@
|
||||
"from langchain.prompts.base import StringPromptTemplate\n",
|
||||
"from langchain.schema import AgentAction, AgentFinish\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_community.chat_models import ChatOpenAI\n",
|
||||
"from langchain_community.embeddings.openai import OpenAIEmbeddings\n",
|
||||
"from langchain_community.llms import BaseLLM, OpenAI\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from pydantic import BaseModel, Field"
|
||||
]
|
||||
},
|
||||
|
@@ -1083,8 +1083,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.vectorstores import ElasticsearchStore\n",
|
||||
"from langchain_community.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain_community.vectorstores import ElasticsearchStore\n",
|
||||
"\n",
|
||||
"embeddings = OpenAIEmbeddings()"
|
||||
]
|
||||
|
@@ -996,7 +996,7 @@ from langchain.prompts import FewShotPromptTemplate, PromptTemplate
|
||||
from langchain.chains.sql_database.prompt import _sqlite_prompt, PROMPT_SUFFIX
|
||||
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings
|
||||
from langchain.prompts.example_selector.semantic_similarity import SemanticSimilarityExampleSelector
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain_community.vectorstores import Chroma
|
||||
|
||||
example_prompt = PromptTemplate(
|
||||
input_variables=["table_info", "input", "sql_cmd", "sql_result", "answer"],
|
||||
|
@@ -37,8 +37,8 @@
|
||||
"import getpass\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"from langchain.vectorstores import DeepLake\n",
|
||||
"from langchain_community.embeddings.openai import OpenAIEmbeddings\n",
|
||||
"from langchain_community.vectorstores import DeepLake\n",
|
||||
"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n",
|
||||
"activeloop_token = getpass.getpass(\"Activeloop Token:\")\n",
|
||||
@@ -110,7 +110,7 @@
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"from langchain.document_loaders import TextLoader\n",
|
||||
"from langchain_community.document_loaders import TextLoader\n",
|
||||
"\n",
|
||||
"root_dir = \"./the-algorithm\"\n",
|
||||
"docs = []\n",
|
||||
|
Reference in New Issue
Block a user