Merge branch 'master' into bagatur/format_content_as

This commit is contained in:
Bagatur 2024-08-29 13:37:08 -07:00
commit fb002faba4
5 changed files with 60 additions and 21 deletions

View File

@ -91,10 +91,10 @@ class AzureOpenAIEmbeddings(OpenAIEmbeddings):
values["azure_ad_token"] = values.get("azure_ad_token") or os.getenv(
"AZURE_OPENAI_AD_TOKEN"
)
# Azure OpenAI embedding models allow a maximum of 16 texts
# Azure OpenAI embedding models allow a maximum of 2048 texts
# at a time in each batch
# See: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#embeddings
values["chunk_size"] = min(values["chunk_size"], 16)
values["chunk_size"] = min(values["chunk_size"], 2048)
try:
import openai # noqa: F401
except ImportError:

View File

@ -307,10 +307,10 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
)
if values["openai_api_type"] in ("azure", "azure_ad", "azuread"):
default_api_version = "2023-05-15"
# Azure OpenAI embedding models allow a maximum of 16 texts
# at a time in each batch
# Azure OpenAI embedding models allow a maximum of 2048
# texts at a time in each batch
# See: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#embeddings
values["chunk_size"] = min(values["chunk_size"], 16)
values["chunk_size"] = min(values["chunk_size"], 2048)
else:
default_api_version = ""
values["openai_api_version"] = get_from_dict_or_env(

View File

@ -41,6 +41,19 @@ def merge_dicts(left: Dict[str, Any], *others: Dict[str, Any]) -> Dict[str, Any]
" but with a different type."
)
elif isinstance(merged[right_k], str):
# TODO: Add below special handling for 'type' key in 0.3 and remove
# merge_lists 'type' logic.
#
# if right_k == "type":
# if merged[right_k] == right_v:
# continue
# else:
# raise ValueError(
# "Unable to merge. Two different values seen for special "
# f"key 'type': {merged[right_k]} and {right_v}. 'type' "
# "should either occur once or have the same value across "
# "all dicts."
# )
merged[right_k] += right_v
elif isinstance(merged[right_k], dict):
merged[right_k] = merge_dicts(merged[right_k], right_v)
@ -81,10 +94,10 @@ def merge_lists(left: Optional[List], *others: Optional[List]) -> Optional[List]
if e_left["index"] == e["index"]
]
if to_merge:
# If a top-level "type" has been set for a chunk, it should no
# longer be overridden by the "type" field in future chunks.
if "type" in merged[to_merge[0]] and "type" in e:
e.pop("type")
# TODO: Remove this once merge_dict is updated with special
# handling for 'type'.
if "type" in e:
e = {k: v for k, v in e.items() if k != "type"}
merged[to_merge[0]] = merge_dicts(merged[to_merge[0]], e)
else:
merged.append(e)

View File

@ -1,6 +1,7 @@
import os
import re
from contextlib import AbstractContextManager, nullcontext
from copy import deepcopy
from typing import Any, Callable, Dict, Optional, Tuple, Type, Union
from unittest.mock import patch
@ -120,9 +121,45 @@ def test_merge_dicts(
else:
err = nullcontext()
left_copy = deepcopy(left)
right_copy = deepcopy(right)
with err:
actual = merge_dicts(left, right)
assert actual == expected
# no mutation
assert left == left_copy
assert right == right_copy
@pytest.mark.parametrize(
("left", "right", "expected"),
(
# 'type' special key handling
({"type": "foo"}, {"type": "foo"}, {"type": "foo"}),
(
{"type": "foo"},
{"type": "bar"},
pytest.raises(ValueError, match="Unable to merge."),
),
),
)
@pytest.mark.xfail(reason="Refactors to make in 0.3")
def test_merge_dicts_0_3(
left: dict, right: dict, expected: Union[dict, AbstractContextManager]
) -> None:
if isinstance(expected, AbstractContextManager):
err = expected
else:
err = nullcontext()
left_copy = deepcopy(left)
right_copy = deepcopy(right)
with err:
actual = merge_dicts(left, right)
assert actual == expected
# no mutation
assert left == left_copy
assert right == right_copy
@pytest.mark.parametrize(

View File

@ -302,19 +302,8 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
values["openai_proxy"] = get_from_dict_or_env(
values, "openai_proxy", "OPENAI_PROXY", default=""
)
if values["openai_api_type"] in ("azure", "azure_ad", "azuread"):
default_api_version = "2023-05-15"
# Azure OpenAI embedding models allow a maximum of 16 texts
# at a time in each batch
# See: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#embeddings
values["chunk_size"] = min(values["chunk_size"], 16)
else:
default_api_version = ""
values["openai_api_version"] = get_from_dict_or_env(
values,
"openai_api_version",
"OPENAI_API_VERSION",
default=default_api_version,
values, "openai_api_version", "OPENAI_API_VERSION", default=""
)
# Check OPENAI_ORGANIZATION for backwards compatibility.
values["openai_organization"] = (