mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-30 02:13:23 +00:00
langchain[minor]: add azure ai data document loader (#13404)
This PR adds an "Azure AI data" document loader, which allows Azure AI users to load their registered data assets as a document object in langchain. --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
parent
24385a00de
commit
fd781c89cc
174
docs/docs/integrations/document_loaders/azure_ai_data.ipynb
Normal file
174
docs/docs/integrations/document_loaders/azure_ai_data.ipynb
Normal file
@ -0,0 +1,174 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a634365e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Azure AI Data\n",
|
||||
"\n",
|
||||
">[Azure AI Studio](https://ai.azure.com/) provides the capability to upload data assets to cloud storage and register existing data assets from the following sources:\n",
|
||||
"\n",
|
||||
"- Microsoft OneLake\n",
|
||||
"- Azure Blob Storage\n",
|
||||
"- Azure Data Lake gen 2\n",
|
||||
"\n",
|
||||
"The benefit of this approach over `AzureBlobStorageContainerLoader` and `AzureBlobStorageFileLoader` is that authentication is handled seamlessly to cloud storage. You can use either *identity-based* data access control to the data or *credential-based* (e.g. SAS token, account key). In the case of credential-based data access you do not need to specify secrets in your code or set up key vaults - the system handles that for you.\n",
|
||||
"\n",
|
||||
"This notebook covers how to load document objects from a data asset in AI Studio."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "49815096",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#!pip install azureml-fsspec, azure-ai-generative"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "2f0cd6a5",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azure.ai.resources.client import AIClient\n",
|
||||
"from azure.identity import DefaultAzureCredential\n",
|
||||
"from langchain.document_loaders import AzureAIDataLoader"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "08d40b11-e87a-426e-a6b0-89f24e47ce2c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Create a connection to your project\n",
|
||||
"client = AIClient(\n",
|
||||
" credential=DefaultAzureCredential(),\n",
|
||||
" subscription_id=\"<subscription_id>\",\n",
|
||||
" resource_group_name=\"<resource_group_name>\",\n",
|
||||
" project_name=\"<project_name>\",\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "321cc7f1",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# get the latest version of your data asset\n",
|
||||
"data_asset = client.data.get(name=\"<data_asset_name>\", label=\"latest\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "25d91cea-c5f2-4a53-ac19-442810451ec6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# load the data asset\n",
|
||||
"loader = AzureAIDataLoader(url=data_asset.path)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "2b11d155",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmpaa9xl6ch/fake.docx'}, lookup_index=0)]"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"loader.load()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "0690c40a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Specifying a glob pattern\n",
|
||||
"You can also specify a glob pattern for more finegrained control over what files to load. In the example below, only files with a `pdf` extension will be loaded."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "72d44781",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"loader = AzureAIDataLoader(url=data_asset.path, glob=\"*.pdf\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "2d3c32db",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmpujbkzf_l/fake.docx'}, lookup_index=0)]"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"loader.load()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "885dc280",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -34,6 +34,9 @@ from langchain.document_loaders.arxiv import ArxivLoader
|
||||
from langchain.document_loaders.assemblyai import AssemblyAIAudioTranscriptLoader
|
||||
from langchain.document_loaders.async_html import AsyncHtmlLoader
|
||||
from langchain.document_loaders.azlyrics import AZLyricsLoader
|
||||
from langchain.document_loaders.azure_ai_data import (
|
||||
AzureAIDataLoader,
|
||||
)
|
||||
from langchain.document_loaders.azure_blob_storage_container import (
|
||||
AzureBlobStorageContainerLoader,
|
||||
)
|
||||
@ -226,6 +229,7 @@ __all__ = [
|
||||
"ArxivLoader",
|
||||
"AssemblyAIAudioTranscriptLoader",
|
||||
"AsyncHtmlLoader",
|
||||
"AzureAIDataLoader",
|
||||
"AzureBlobStorageContainerLoader",
|
||||
"AzureBlobStorageFileLoader",
|
||||
"BSHTMLLoader",
|
||||
|
43
libs/langchain/langchain/document_loaders/azure_ai_data.py
Normal file
43
libs/langchain/langchain/document_loaders/azure_ai_data.py
Normal file
@ -0,0 +1,43 @@
|
||||
from typing import Iterator, List, Optional
|
||||
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.document_loaders.base import BaseLoader
|
||||
from langchain.document_loaders.unstructured import UnstructuredFileIOLoader
|
||||
|
||||
|
||||
class AzureAIDataLoader(BaseLoader):
|
||||
"""Load from Azure AI Data."""
|
||||
|
||||
def __init__(self, url: str, glob: Optional[str] = None):
|
||||
"""Initialize with URL to a data asset or storage location
|
||||
."""
|
||||
self.url = url
|
||||
"""URL to the data asset or storage location."""
|
||||
self.glob_pattern = glob
|
||||
"""Optional glob pattern to select files. Defaults to None."""
|
||||
|
||||
def load(self) -> List[Document]:
|
||||
"""Load documents."""
|
||||
return list(self.lazy_load())
|
||||
|
||||
def lazy_load(self) -> Iterator[Document]:
|
||||
"""A lazy loader for Documents."""
|
||||
try:
|
||||
from azureml.fsspec import AzureMachineLearningFileSystem
|
||||
except ImportError as exc:
|
||||
raise ImportError(
|
||||
"Could not import azureml-fspec package."
|
||||
"Please install it with `pip install azureml-fsspec`."
|
||||
) from exc
|
||||
|
||||
fs = AzureMachineLearningFileSystem(self.url)
|
||||
|
||||
if self.glob_pattern:
|
||||
remote_paths_list = fs.glob(self.glob_pattern)
|
||||
else:
|
||||
remote_paths_list = fs.ls()
|
||||
|
||||
for remote_path in remote_paths_list:
|
||||
with fs.open(remote_path) as f:
|
||||
loader = UnstructuredFileIOLoader(file=f)
|
||||
yield from loader.load()
|
@ -22,6 +22,7 @@ EXPECTED_ALL = [
|
||||
"ArxivLoader",
|
||||
"AssemblyAIAudioTranscriptLoader",
|
||||
"AsyncHtmlLoader",
|
||||
"AzureAIDataLoader",
|
||||
"AzureBlobStorageContainerLoader",
|
||||
"AzureBlobStorageFileLoader",
|
||||
"BSHTMLLoader",
|
||||
|
Loading…
Reference in New Issue
Block a user