core: Two updates to chat model interface (#19684)

- .stream() and .astream() call on_llm_new_token, removing the need for
subclasses to do so. Backwards compatible because now we don't pass
run_manager into ._stream and ._astream
- .generate() and .agenerate() now handle `stream: bool` kwarg for
_generate and _agenerate. Subclasses handle this arg by delegating to
._stream(), now one less thing they need to do. Backwards compat because
this is an optional arg that we now never pass to the subclasses
- .generate() and .agenerate() now inspect callback handlers to decide
on a default value for stream:bool if not passed in. This auto enables
streaming when using astream_events and astream_log
- as a result of these three changes any usage of .astream_events and
.astream_log should now yield chat model stream events
- In future PRs we can update all subclasses to reflect these two things
now handled by base class, but in meantime all will continue to work
This commit is contained in:
Nuno Campos 2024-03-27 18:45:01 -07:00 committed by GitHub
parent 3685f8ceac
commit fdfb51ad8d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 254 additions and 15 deletions

View File

@ -50,6 +50,7 @@ from langchain_core.outputs import (
from langchain_core.prompt_values import ChatPromptValue, PromptValue, StringPromptValue
from langchain_core.pydantic_v1 import Field, root_validator
from langchain_core.runnables.config import ensure_config, run_in_executor
from langchain_core.tracers.log_stream import LogStreamCallbackHandler
if TYPE_CHECKING:
from langchain_core.runnables import RunnableConfig
@ -219,9 +220,10 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
)
generation: Optional[ChatGenerationChunk] = None
try:
for chunk in self._stream(
messages, stop=stop, run_manager=run_manager, **kwargs
):
for chunk in self._stream(messages, stop=stop, **kwargs):
run_manager.on_llm_new_token(
cast(str, chunk.message.content), chunk=chunk
)
chunk.message.response_metadata = _gen_info_and_msg_metadata(chunk)
yield chunk.message
if generation is None:
@ -287,9 +289,11 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
async for chunk in self._astream(
messages,
stop=stop,
run_manager=run_manager,
**kwargs,
):
await run_manager.on_llm_new_token(
cast(str, chunk.message.content), chunk=chunk
)
chunk.message.response_metadata = _gen_info_and_msg_metadata(chunk)
yield chunk.message
if generation is None:
@ -585,6 +589,31 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
raise ValueError(
"Asked to cache, but no cache found at `langchain.cache`."
)
# If stream is not explicitly set, check if implicitly requested by
# astream_events() or astream_log(). Bail out if _stream not implemented
if type(self)._stream != BaseChatModel._stream and kwargs.pop(
"stream",
next(
(
True
for h in run_manager.handlers
if isinstance(h, LogStreamCallbackHandler)
),
False,
)
if run_manager
else False,
):
chunks: List[ChatGenerationChunk] = []
for chunk in self._stream(messages, stop=stop, **kwargs):
if run_manager:
run_manager.on_llm_new_token(
cast(str, chunk.message.content), chunk=chunk
)
chunk.message.response_metadata = _gen_info_and_msg_metadata(chunk)
chunks.append(chunk)
result = generate_from_stream(iter(chunks))
else:
if inspect.signature(self._generate).parameters.get("run_manager"):
result = self._generate(
messages, stop=stop, run_manager=run_manager, **kwargs
@ -634,6 +663,34 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC):
raise ValueError(
"Asked to cache, but no cache found at `langchain.cache`."
)
# If stream is not explicitly set, check if implicitly requested by
# astream_events() or astream_log(). Bail out if _astream not implemented
if (
type(self)._astream != BaseChatModel._astream
or type(self)._stream != BaseChatModel._stream
) and kwargs.pop(
"stream",
next(
(
True
for h in run_manager.handlers
if isinstance(h, LogStreamCallbackHandler)
),
False,
)
if run_manager
else False,
):
chunks: List[ChatGenerationChunk] = []
async for chunk in self._astream(messages, stop=stop, **kwargs):
if run_manager:
await run_manager.on_llm_new_token(
cast(str, chunk.message.content), chunk=chunk
)
chunk.message.response_metadata = _gen_info_and_msg_metadata(chunk)
chunks.append(chunk)
result = generate_from_stream(iter(chunks))
else:
if inspect.signature(self._agenerate).parameters.get("run_manager"):
result = await self._agenerate(
messages, stop=stop, run_manager=run_manager, **kwargs

View File

@ -1,4 +1,5 @@
"""Module that contains tests for runnable.astream_events API."""
import sys
from itertools import cycle
from typing import Any, AsyncIterator, Dict, List, Sequence, cast
@ -22,6 +23,7 @@ from langchain_core.retrievers import BaseRetriever
from langchain_core.runnables import (
ConfigurableField,
Runnable,
RunnableConfig,
RunnableLambda,
)
from langchain_core.runnables.history import RunnableWithMessageHistory
@ -314,9 +316,7 @@ async def test_event_stream_with_lambdas_from_lambda() -> None:
async def test_astream_events_from_model() -> None:
"""Test the output of a model."""
infinite_cycle = cycle(
[AIMessage(content="hello world!"), AIMessage(content="goodbye world!")]
)
infinite_cycle = cycle([AIMessage(content="hello world!")])
# When streaming GenericFakeChatModel breaks AIMessage into chunks based on spaces
model = (
GenericFakeChatModel(messages=infinite_cycle)
@ -373,6 +373,188 @@ async def test_astream_events_from_model() -> None:
},
]
@RunnableLambda
def i_dont_stream(input: Any, config: RunnableConfig) -> Any:
if sys.version_info >= (3, 11):
return model.invoke(input)
else:
return model.invoke(input, config)
events = await _collect_events(i_dont_stream.astream_events("hello", version="v1"))
assert events == [
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "i_dont_stream",
"run_id": "",
"tags": [],
},
{
"data": {"input": {"messages": [[HumanMessage(content="hello")]]}},
"event": "on_chat_model_start",
"metadata": {"a": "b"},
"name": "my_model",
"run_id": "",
"tags": ["my_model"],
},
{
"data": {"chunk": AIMessageChunk(content="hello")},
"event": "on_chat_model_stream",
"metadata": {"a": "b"},
"name": "my_model",
"run_id": "",
"tags": ["my_model"],
},
{
"data": {"chunk": AIMessageChunk(content=" ")},
"event": "on_chat_model_stream",
"metadata": {"a": "b"},
"name": "my_model",
"run_id": "",
"tags": ["my_model"],
},
{
"data": {"chunk": AIMessageChunk(content="world!")},
"event": "on_chat_model_stream",
"metadata": {"a": "b"},
"name": "my_model",
"run_id": "",
"tags": ["my_model"],
},
{
"data": {
"input": {"messages": [[HumanMessage(content="hello")]]},
"output": {
"generations": [
[
{
"generation_info": None,
"message": AIMessage(content="hello world!"),
"text": "hello world!",
"type": "ChatGeneration",
}
]
],
"llm_output": None,
"run": None,
},
},
"event": "on_chat_model_end",
"metadata": {"a": "b"},
"name": "my_model",
"run_id": "",
"tags": ["my_model"],
},
{
"data": {"chunk": AIMessage(content="hello world!")},
"event": "on_chain_stream",
"metadata": {},
"name": "i_dont_stream",
"run_id": "",
"tags": [],
},
{
"data": {"output": AIMessage(content="hello world!")},
"event": "on_chain_end",
"metadata": {},
"name": "i_dont_stream",
"run_id": "",
"tags": [],
},
]
@RunnableLambda
async def ai_dont_stream(input: Any, config: RunnableConfig) -> Any:
if sys.version_info >= (3, 11):
return await model.ainvoke(input)
else:
return await model.ainvoke(input, config)
events = await _collect_events(ai_dont_stream.astream_events("hello", version="v1"))
assert events == [
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "ai_dont_stream",
"run_id": "",
"tags": [],
},
{
"data": {"input": {"messages": [[HumanMessage(content="hello")]]}},
"event": "on_chat_model_start",
"metadata": {"a": "b"},
"name": "my_model",
"run_id": "",
"tags": ["my_model"],
},
{
"data": {"chunk": AIMessageChunk(content="hello")},
"event": "on_chat_model_stream",
"metadata": {"a": "b"},
"name": "my_model",
"run_id": "",
"tags": ["my_model"],
},
{
"data": {"chunk": AIMessageChunk(content=" ")},
"event": "on_chat_model_stream",
"metadata": {"a": "b"},
"name": "my_model",
"run_id": "",
"tags": ["my_model"],
},
{
"data": {"chunk": AIMessageChunk(content="world!")},
"event": "on_chat_model_stream",
"metadata": {"a": "b"},
"name": "my_model",
"run_id": "",
"tags": ["my_model"],
},
{
"data": {
"input": {"messages": [[HumanMessage(content="hello")]]},
"output": {
"generations": [
[
{
"generation_info": None,
"message": AIMessage(content="hello world!"),
"text": "hello world!",
"type": "ChatGeneration",
}
]
],
"llm_output": None,
"run": None,
},
},
"event": "on_chat_model_end",
"metadata": {"a": "b"},
"name": "my_model",
"run_id": "",
"tags": ["my_model"],
},
{
"data": {"chunk": AIMessage(content="hello world!")},
"event": "on_chain_stream",
"metadata": {},
"name": "ai_dont_stream",
"run_id": "",
"tags": [],
},
{
"data": {"output": AIMessage(content="hello world!")},
"event": "on_chain_end",
"metadata": {},
"name": "ai_dont_stream",
"run_id": "",
"tags": [],
},
]
async def test_event_stream_with_simple_chain() -> None:
"""Test as event stream."""