mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-01 11:02:37 +00:00
add async and streaming support to OpenAIChat
(#1378)
title says it all
This commit is contained in:
@@ -1,7 +1,6 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "f6574496-b360-4ffa-9523-7fd34a590164",
|
||||
"metadata": {},
|
||||
@@ -10,14 +9,14 @@
|
||||
"\n",
|
||||
"LangChain provides async support for LLMs by leveraging the [asyncio](https://docs.python.org/3/library/asyncio.html) library.\n",
|
||||
"\n",
|
||||
"Async support is particularly useful for calling multiple LLMs concurrently, as these calls are network-bound. Currently, only `OpenAI` and `PromptLayerOpenAI` is supported, but async support for other LLMs is on the roadmap.\n",
|
||||
"Async support is particularly useful for calling multiple LLMs concurrently, as these calls are network-bound. Currently, only `OpenAI` `OpenAIChat`, and `PromptLayerOpenAI` are supported, but async support for other LLMs is on the roadmap.\n",
|
||||
"\n",
|
||||
"You can use the `agenerate` method to call an OpenAI LLM asynchronously."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": 1,
|
||||
"id": "5e49e96c-0f88-466d-b3d3-ea0966bdf19e",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@@ -29,64 +28,66 @@
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"I'm doing well. How about you?\n",
|
||||
"As an AI language model, I don't have feelings like humans, but I'm functioning properly. How may I assist you?\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"I'm doing well, thank you. How about you?\n",
|
||||
"I'm an AI language model, so I don't have emotions, but I'm functioning properly. How may I assist you today?\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"I'm doing well, thank you. How about you?\n",
|
||||
"As an AI language model, I do not have emotions like humans, but I'm functioning normally. How can I assist you today?\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"I'm doing well, thank you. How about you?\n",
|
||||
"\n",
|
||||
"I am doing quite well. How about you?\n",
|
||||
"I am an AI language model, so I do not have feelings, but I am here to assist you. How may I help you today?\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"I'm doing well, thank you. How about you?\n",
|
||||
"As an AI language model, I do not have feelings or emotions but I'm always ready to assist you. How may I assist you today?\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"I'm doing great, thank you! How about you?\n",
|
||||
"As an AI language model, I don't have feelings, but I'm functioning normally. How may I assist you today?\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"I'm doing well, thanks for asking. How about you?\n",
|
||||
"As an AI language model, I don't have feelings, but I'm functioning properly. Thank you. How may I assist you today?\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"I'm doing well, thank you. How about you?\n",
|
||||
"As an AI language model, I don't have emotions, so I don't have a specific feeling or emotion. How can I assist you today?\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"I'm doing well, thank you. How about you?\n",
|
||||
"\u001b[1mConcurrent executed in 1.93 seconds.\u001b[0m\n",
|
||||
"As an AI language model, I do not have feelings or emotions. However, I am functioning as intended and ready to assist you with any queries you may have. How can I be of assistance today?\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"I'm doing well, thank you. How about you?\n",
|
||||
"As an AI language model, I do not have feelings, but I am functioning well. Thank you for asking. How can I assist you today?\n",
|
||||
"\u001b[1mConcurrent executed in 0.92 seconds.\u001b[0m\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"I'm doing well, thank you. How about you?\n",
|
||||
"As an AI language model, I don't have feelings, but I'm functioning well. How can I assist you today?\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"I'm doing well, thank you. How about you?\n",
|
||||
"As an AI language model, I don't have feelings, but I'm functioning well. Thank you for asking. How may I assist you today?\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"I'm doing well, thank you. How about you?\n",
|
||||
"I'm an AI language model, so I don't have feelings, but I'm functioning well. How can I assist you today?\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"I'm doing well, thank you. How about you?\n",
|
||||
"As an AI language model, I don't have feelings, but I'm functioning well. Thank you for asking. How may I assist you today?\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"I'm doing well, thank you. How about you?\n",
|
||||
"\n",
|
||||
"I'm doing well, thank you. How about you?\n",
|
||||
"As an AI language model, I don't have feelings, but I am functioning well. How can I assist you today?\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"I'm doing well, thank you. How about you?\n",
|
||||
"As an AI language model, I don't have feelings but I'm functioning well. How can I assist you today?\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"I'm doing well, thank you. How about you?\n",
|
||||
"As an AI language model, I do not have personal emotions. However, I am functioning well and ready to assist you with any queries or tasks you have. How may I assist you today?\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"I'm doing great, thank you. How about you?\n",
|
||||
"\u001b[1mSerial executed in 10.54 seconds.\u001b[0m\n"
|
||||
"As an AI language model, I do not have feelings or emotions, but I'm functioning well. How can I assist you today?\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"I am an AI language model and do not have feelings. But I am functioning properly and ready to assist you with any task. How may I help you today?\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"As an AI language model, I do not have emotions, but I am functioning well. How can I assist you today?\n",
|
||||
"\u001b[1mSerial executed in 5.00 seconds.\u001b[0m\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -94,10 +95,10 @@
|
||||
"import time\n",
|
||||
"import asyncio\n",
|
||||
"\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.llms import OpenAIChat\n",
|
||||
"\n",
|
||||
"def generate_serially():\n",
|
||||
" llm = OpenAI(temperature=0.9)\n",
|
||||
" llm = OpenAIChat(temperature=0.9)\n",
|
||||
" for _ in range(10):\n",
|
||||
" resp = llm.generate([\"Hello, how are you?\"])\n",
|
||||
" print(resp.generations[0][0].text)\n",
|
||||
@@ -109,7 +110,7 @@
|
||||
"\n",
|
||||
"\n",
|
||||
"async def generate_concurrently():\n",
|
||||
" llm = OpenAI(temperature=0.9)\n",
|
||||
" llm = OpenAIChat(temperature=0.9)\n",
|
||||
" tasks = [async_generate(llm) for _ in range(10)]\n",
|
||||
" await asyncio.gather(*tasks)\n",
|
||||
"\n",
|
||||
@@ -125,6 +126,14 @@
|
||||
"elapsed = time.perf_counter() - s\n",
|
||||
"print('\\033[1m' + f\"Serial executed in {elapsed:0.2f} seconds.\" + '\\033[0m')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e1d3a966-3a27-44e8-9441-ed72f01b86f4",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
@@ -7,12 +7,12 @@
|
||||
"source": [
|
||||
"# Streaming with LLMs\n",
|
||||
"\n",
|
||||
"LangChain provides streaming support for LLMs. Currently, we only support streaming for the `OpenAI` LLM implementation, but streaming support for other LLM implementations is on the roadmap. To utilize streaming, use a [`CallbackHandler`](https://github.com/hwchase17/langchain/blob/master/langchain/callbacks/base.py) that implements `on_llm_new_token`. In this example, we are using [`StreamingStdOutCallbackHandler`]()."
|
||||
"LangChain provides streaming support for LLMs. Currently, we only support streaming for the `OpenAI` and `OpenAIChat` LLM implementation, but streaming support for other LLM implementations is on the roadmap. To utilize streaming, use a [`CallbackHandler`](https://github.com/hwchase17/langchain/blob/master/langchain/callbacks/base.py) that implements `on_llm_new_token`. In this example, we are using [`StreamingStdOutCallbackHandler`]()."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": 2,
|
||||
"id": "4ac0ff54-540a-4f2b-8d9a-b590fec7fe07",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@@ -27,43 +27,43 @@
|
||||
"Verse 1\n",
|
||||
"I'm sippin' on sparkling water,\n",
|
||||
"It's so refreshing and light,\n",
|
||||
"It's the perfect way to quench my thirst,\n",
|
||||
"It's the perfect way to quench my thirst\n",
|
||||
"On a hot summer night.\n",
|
||||
"\n",
|
||||
"Chorus\n",
|
||||
"Sparkling water, sparkling water,\n",
|
||||
"It's the best way to stay hydrated,\n",
|
||||
"It's so refreshing and light,\n",
|
||||
"It's the perfect way to stay alive.\n",
|
||||
"It's so crisp and so clean,\n",
|
||||
"It's the perfect way to stay refreshed.\n",
|
||||
"\n",
|
||||
"Verse 2\n",
|
||||
"I'm sippin' on sparkling water,\n",
|
||||
"It's so bubbly and bright,\n",
|
||||
"It's the perfect way to cool me down,\n",
|
||||
"It's the perfect way to cool me down\n",
|
||||
"On a hot summer night.\n",
|
||||
"\n",
|
||||
"Chorus\n",
|
||||
"Sparkling water, sparkling water,\n",
|
||||
"It's the best way to stay hydrated,\n",
|
||||
"It's so refreshing and light,\n",
|
||||
"It's the perfect way to stay alive.\n",
|
||||
"It's so crisp and so clean,\n",
|
||||
"It's the perfect way to stay refreshed.\n",
|
||||
"\n",
|
||||
"Verse 3\n",
|
||||
"I'm sippin' on sparkling water,\n",
|
||||
"It's so crisp and clean,\n",
|
||||
"It's the perfect way to keep me going,\n",
|
||||
"On a hot summer day.\n",
|
||||
"It's so light and so clear,\n",
|
||||
"It's the perfect way to keep me cool\n",
|
||||
"On a hot summer night.\n",
|
||||
"\n",
|
||||
"Chorus\n",
|
||||
"Sparkling water, sparkling water,\n",
|
||||
"It's the best way to stay hydrated,\n",
|
||||
"It's so refreshing and light,\n",
|
||||
"It's the perfect way to stay alive."
|
||||
"It's so crisp and so clean,\n",
|
||||
"It's the perfect way to stay refreshed."
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.llms import OpenAI, OpenAIChat\n",
|
||||
"from langchain.callbacks.base import CallbackManager\n",
|
||||
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
|
||||
"\n",
|
||||
@@ -84,7 +84,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 3,
|
||||
"id": "a35373f1-9ee6-4753-a343-5aee749b8527",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@@ -103,10 +103,10 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"LLMResult(generations=[[Generation(text='\\n\\nQ: What did the fish say when it hit the wall?\\nA: Dam!', generation_info={'finish_reason': 'stop', 'logprobs': None})]], llm_output={'token_usage': {}})"
|
||||
"LLMResult(generations=[[Generation(text='\\n\\nQ: What did the fish say when it hit the wall?\\nA: Dam!', generation_info={'finish_reason': None, 'logprobs': None})]], llm_output={'token_usage': {}})"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -114,6 +114,85 @@
|
||||
"source": [
|
||||
"llm.generate([\"Tell me a joke.\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a93a4d61-0476-49db-8321-7de92bd74059",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Here's an example with `OpenAIChat`:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "22665f16-e05b-473c-a4bd-ad75744ea024",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"Verse 1:\n",
|
||||
"Bubbles rising to the top\n",
|
||||
"A refreshing drink that never stops\n",
|
||||
"Clear and crisp, it's pure delight\n",
|
||||
"A taste that's sure to excite\n",
|
||||
"\n",
|
||||
"Chorus:\n",
|
||||
"Sparkling water, oh so fine\n",
|
||||
"A drink that's always on my mind\n",
|
||||
"With every sip, I feel alive\n",
|
||||
"Sparkling water, you're my vibe\n",
|
||||
"\n",
|
||||
"Verse 2:\n",
|
||||
"No sugar, no calories, just pure bliss\n",
|
||||
"A drink that's hard to resist\n",
|
||||
"It's the perfect way to quench my thirst\n",
|
||||
"A drink that always comes first\n",
|
||||
"\n",
|
||||
"Chorus:\n",
|
||||
"Sparkling water, oh so fine\n",
|
||||
"A drink that's always on my mind\n",
|
||||
"With every sip, I feel alive\n",
|
||||
"Sparkling water, you're my vibe\n",
|
||||
"\n",
|
||||
"Bridge:\n",
|
||||
"From the mountains to the sea\n",
|
||||
"Sparkling water, you're the key\n",
|
||||
"To a healthy life, a happy soul\n",
|
||||
"A drink that makes me feel whole\n",
|
||||
"\n",
|
||||
"Chorus:\n",
|
||||
"Sparkling water, oh so fine\n",
|
||||
"A drink that's always on my mind\n",
|
||||
"With every sip, I feel alive\n",
|
||||
"Sparkling water, you're my vibe\n",
|
||||
"\n",
|
||||
"Outro:\n",
|
||||
"Sparkling water, you're the one\n",
|
||||
"A drink that's always so much fun\n",
|
||||
"I'll never let you go, my friend\n",
|
||||
"Sparkling water, until the end."
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm = OpenAIChat(streaming=True, callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]), verbose=True, temperature=0)\n",
|
||||
"resp = llm(\"Write me a song about sparkling water.\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "eadae4ba-9f21-4ec8-845d-dd43b0edc2dc",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
Reference in New Issue
Block a user