mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-12 21:11:43 +00:00
community[minor]: Add KDBAI vector store (#12797)
Addition of KDBAI vector store (https://kdb.ai). Dependencies: `kdbai_client` v0.1.2 Python package. Sample notebook: `docs/docs/integrations/vectorstores/kdbai.ipynb` Tag maintainer: @bu2kx Twitter handle: @kxsystems
This commit is contained in:
267
libs/community/langchain_community/vectorstores/kdbai.py
Normal file
267
libs/community/langchain_community/vectorstores/kdbai.py
Normal file
@@ -0,0 +1,267 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import uuid
|
||||
from typing import Any, Iterable, List, Optional, Tuple
|
||||
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.vectorstores import VectorStore
|
||||
|
||||
from langchain_community.vectorstores.utils import DistanceStrategy
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class KDBAI(VectorStore):
|
||||
"""`KDB.AI` vector store [https://kdb.ai](https://kdb.ai)
|
||||
|
||||
To use, you should have the `kdbai_client` python package installed.
|
||||
|
||||
Args:
|
||||
table: kdbai_client.Table object to use as storage,
|
||||
embedding: Any embedding function implementing
|
||||
`langchain.embeddings.base.Embeddings` interface,
|
||||
distance_strategy: One option from DistanceStrategy.EUCLIDEAN_DISTANCE,
|
||||
DistanceStrategy.DOT_PRODUCT or DistanceStrategy.COSINE.
|
||||
|
||||
See the example [notebook](https://github.com/KxSystems/langchain/blob/KDB.AI/docs/docs/integrations/vectorstores/kdbai.ipynb).
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
table: Any,
|
||||
embedding: Embeddings,
|
||||
distance_strategy: Optional[
|
||||
DistanceStrategy
|
||||
] = DistanceStrategy.EUCLIDEAN_DISTANCE,
|
||||
):
|
||||
try:
|
||||
import kdbai_client # noqa
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import kdbai_client python package. "
|
||||
"Please install it with `pip install kdbai_client`."
|
||||
)
|
||||
self._table = table
|
||||
self._embedding = embedding
|
||||
self.distance_strategy = distance_strategy
|
||||
|
||||
@property
|
||||
def embeddings(self) -> Optional[Embeddings]:
|
||||
if isinstance(self._embedding, Embeddings):
|
||||
return self._embedding
|
||||
return None
|
||||
|
||||
def _embed_documents(self, texts: Iterable[str]) -> List[List[float]]:
|
||||
if isinstance(self._embedding, Embeddings):
|
||||
return self._embedding.embed_documents(list(texts))
|
||||
return [self._embedding(t) for t in texts]
|
||||
|
||||
def _embed_query(self, text: str) -> List[float]:
|
||||
if isinstance(self._embedding, Embeddings):
|
||||
return self._embedding.embed_query(text)
|
||||
return self._embedding(text)
|
||||
|
||||
def _insert(
|
||||
self,
|
||||
texts: List[str],
|
||||
ids: Optional[List[str]],
|
||||
metadata: Optional[Any] = None,
|
||||
) -> None:
|
||||
try:
|
||||
import numpy as np
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import numpy python package. "
|
||||
"Please install it with `pip install numpy`."
|
||||
)
|
||||
|
||||
try:
|
||||
import pandas as pd
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import pandas python package. "
|
||||
"Please install it with `pip install pandas`."
|
||||
)
|
||||
|
||||
embeds = self._embedding.embed_documents(texts)
|
||||
df = pd.DataFrame()
|
||||
df["id"] = ids
|
||||
df["text"] = [t.encode("utf-8") for t in texts]
|
||||
df["embeddings"] = [np.array(e, dtype="float32") for e in embeds]
|
||||
if metadata is not None:
|
||||
df = pd.concat([df, metadata], axis=1)
|
||||
self._table.insert(df, warn=False)
|
||||
|
||||
def add_texts(
|
||||
self,
|
||||
texts: Iterable[str],
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
batch_size: int = 32,
|
||||
**kwargs: Any,
|
||||
) -> List[str]:
|
||||
"""Run more texts through the embeddings and add to the vectorstore.
|
||||
|
||||
Args:
|
||||
texts (Iterable[str]): Texts to add to the vectorstore.
|
||||
metadatas (Optional[List[dict]]): List of metadata corresponding to each
|
||||
chunk of text.
|
||||
ids (Optional[List[str]]): List of IDs corresponding to each chunk of text.
|
||||
batch_size (Optional[int]): Size of batch of chunks of text to insert at
|
||||
once.
|
||||
|
||||
Returns:
|
||||
List[str]: List of IDs of the added texts.
|
||||
"""
|
||||
|
||||
try:
|
||||
import pandas as pd
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import pandas python package. "
|
||||
"Please install it with `pip install pandas`."
|
||||
)
|
||||
|
||||
texts = list(texts)
|
||||
metadf: pd.DataFrame = None
|
||||
if metadatas is not None:
|
||||
if isinstance(metadatas, pd.DataFrame):
|
||||
metadf = metadatas
|
||||
else:
|
||||
metadf = pd.DataFrame(metadatas)
|
||||
out_ids: List[str] = []
|
||||
nbatches = (len(texts) - 1) // batch_size + 1
|
||||
for i in range(nbatches):
|
||||
istart = i * batch_size
|
||||
iend = (i + 1) * batch_size
|
||||
batch = texts[istart:iend]
|
||||
if ids:
|
||||
batch_ids = ids[istart:iend]
|
||||
else:
|
||||
batch_ids = [str(uuid.uuid4()) for _ in range(len(batch))]
|
||||
if metadf is not None:
|
||||
batch_meta = metadf.iloc[istart:iend].reset_index(drop=True)
|
||||
else:
|
||||
batch_meta = None
|
||||
self._insert(batch, batch_ids, batch_meta)
|
||||
out_ids = out_ids + batch_ids
|
||||
return out_ids
|
||||
|
||||
def add_documents(
|
||||
self, documents: List[Document], batch_size: int = 32, **kwargs: Any
|
||||
) -> List[str]:
|
||||
"""Run more documents through the embeddings and add to the vectorstore.
|
||||
|
||||
Args:
|
||||
documents (List[Document]: Documents to add to the vectorstore.
|
||||
batch_size (Optional[int]): Size of batch of documents to insert at once.
|
||||
|
||||
Returns:
|
||||
List[str]: List of IDs of the added texts.
|
||||
"""
|
||||
|
||||
try:
|
||||
import pandas as pd
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import pandas python package. "
|
||||
"Please install it with `pip install pandas`."
|
||||
)
|
||||
|
||||
texts = [x.page_content for x in documents]
|
||||
metadata = pd.DataFrame([x.metadata for x in documents])
|
||||
return self.add_texts(texts, metadata=metadata, batch_size=batch_size)
|
||||
|
||||
def similarity_search_with_score(
|
||||
self,
|
||||
query: str,
|
||||
k: int = 1,
|
||||
filter: Optional[List] = [],
|
||||
**kwargs: Any,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
"""Run similarity search with distance from a query string.
|
||||
|
||||
Args:
|
||||
query (str): Query string.
|
||||
k (Optional[int]): number of neighbors to retrieve.
|
||||
filter (Optional[List]): KDB.AI metadata filter clause: https://code.kx.com/kdbai/use/filter.html
|
||||
|
||||
Returns:
|
||||
List[Document]: List of similar documents.
|
||||
"""
|
||||
return self.similarity_search_by_vector_with_score(
|
||||
self._embed_query(query), k=k, filter=filter, **kwargs
|
||||
)
|
||||
|
||||
def similarity_search_by_vector_with_score(
|
||||
self,
|
||||
embedding: List[float],
|
||||
*,
|
||||
k: int = 1,
|
||||
filter: Optional[List] = [],
|
||||
**kwargs: Any,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
"""Return pinecone documents most similar to embedding, along with scores.
|
||||
|
||||
Args:
|
||||
embedding (List[float]): query vector.
|
||||
k (Optional[int]): number of neighbors to retrieve.
|
||||
filter (Optional[List]): KDB.AI metadata filter clause: https://code.kx.com/kdbai/use/filter.html
|
||||
|
||||
Returns:
|
||||
List[Document]: List of similar documents.
|
||||
"""
|
||||
if "n" in kwargs:
|
||||
k = kwargs.pop("n")
|
||||
matches = self._table.search(vectors=[embedding], n=k, filter=filter, **kwargs)[
|
||||
0
|
||||
]
|
||||
docs = []
|
||||
for row in matches.to_dict(orient="records"):
|
||||
text = row.pop("text")
|
||||
score = row.pop("__nn_distance")
|
||||
docs.append(
|
||||
(
|
||||
Document(
|
||||
page_content=text,
|
||||
metadata={k: v for k, v in row.items() if k != "text"},
|
||||
),
|
||||
score,
|
||||
)
|
||||
)
|
||||
return docs
|
||||
|
||||
def similarity_search(
|
||||
self,
|
||||
query: str,
|
||||
k: int = 1,
|
||||
filter: Optional[List] = [],
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
"""Run similarity search from a query string.
|
||||
|
||||
Args:
|
||||
query (str): Query string.
|
||||
k (Optional[int]): number of neighbors to retrieve.
|
||||
filter (Optional[List]): KDB.AI metadata filter clause: https://code.kx.com/kdbai/use/filter.html
|
||||
|
||||
Returns:
|
||||
List[Document]: List of similar documents.
|
||||
"""
|
||||
docs_and_scores = self.similarity_search_with_score(
|
||||
query, k=k, filter=filter, **kwargs
|
||||
)
|
||||
return [doc for doc, _ in docs_and_scores]
|
||||
|
||||
@classmethod
|
||||
def from_texts(
|
||||
cls: Any,
|
||||
texts: List[str],
|
||||
embedding: Embeddings,
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
**kwargs: Any,
|
||||
) -> Any:
|
||||
"""Not implemented."""
|
||||
raise Exception("Not implemented.")
|
Reference in New Issue
Block a user