diff --git a/libs/community/langchain_community/vectorstores/vectara.py b/libs/community/langchain_community/vectorstores/vectara.py index 4a9334b3fbb..0fc91004216 100644 --- a/libs/community/langchain_community/vectorstores/vectara.py +++ b/libs/community/langchain_community/vectorstores/vectara.py @@ -22,11 +22,14 @@ class SummaryConfig: is_enabled: True if summary is enabled, False otherwise max_results: maximum number of results to summarize response_lang: requested language for the summary + prompt_name: name of the prompt to use for summarization + (see https://docs.vectara.com/docs/learn/grounded-generation/select-a-summarizer) """ is_enabled: bool = False max_results: int = 7 response_lang: str = "eng" + prompt_name: str = "vectara-summary-ext-v1.2.0" @dataclass @@ -364,6 +367,7 @@ class Vectara(VectorStore): { "maxSummarizedResults": config.summary_config.max_results, "responseLang": config.summary_config.response_lang, + "summarizerPromptName": config.summary_config.prompt_name, } ] @@ -570,6 +574,7 @@ class VectaraRetriever(VectorStoreRetriever): "k": 5, "filter": "", "n_sentence_context": "2", + "summary_config": SummaryConfig(), } ) diff --git a/templates/rag-vectara-multiquery/README.md b/templates/rag-vectara-multiquery/README.md index b12b67942d4..e2018a51937 100644 --- a/templates/rag-vectara-multiquery/README.md +++ b/templates/rag-vectara-multiquery/README.md @@ -23,20 +23,20 @@ pip install -U langchain-cli To create a new LangChain project and install this as the only package, you can do: ```shell -langchain app new my-app --package rag-vectara +langchain app new my-app --package rag-vectara-multiquery ``` If you want to add this to an existing project, you can just run: ```shell -langchain app add rag-vectara +langchain app add rag-vectara-multiquery ``` And add the following code to your `server.py` file: ```python from rag_vectara import chain as rag_vectara_chain -add_routes(app, rag_vectara_chain, path="/rag-vectara") +add_routes(app, rag_vectara_chain, path="/rag-vectara-multiquery") ``` (Optional) Let's now configure LangSmith. @@ -61,12 +61,12 @@ This will start the FastAPI app with a server is running locally at [http://localhost:8000](http://localhost:8000) We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs) -We can access the playground at [http://127.0.0.1:8000/rag-vectara/playground](http://127.0.0.1:8000/rag-vectara/playground) +We can access the playground at [http://127.0.0.1:8000/rag-vectara-multiquery/playground](http://127.0.0.1:8000/rag-vectara-multiquery/playground) We can access the template from code with: ```python from langserve.client import RemoteRunnable -runnable = RemoteRunnable("http://localhost:8000/rag-vectara") +runnable = RemoteRunnable("http://localhost:8000/rag-vectara-multiquery") ``` diff --git a/templates/rag-vectara-multiquery/rag_vectara_multiquery/chain.py b/templates/rag-vectara-multiquery/rag_vectara_multiquery/chain.py index 9b769e9bd04..1fd9354b7fa 100644 --- a/templates/rag-vectara-multiquery/rag_vectara_multiquery/chain.py +++ b/templates/rag-vectara-multiquery/rag_vectara_multiquery/chain.py @@ -41,7 +41,6 @@ retriever = MultiQueryRetriever.from_llm(retriever=vectara_retriever, llm=llm) # We extract the summary from the RAG output, which is the last document # (if summary is enabled) # Note that if you want to extract the citation information, you can use res[:-1]] -model = ChatOpenAI() chain = ( RunnableParallel({"context": retriever, "question": RunnablePassthrough()}) | (lambda res: res[-1])