See https://docs.astral.sh/ruff/rules/#flake8-type-checking-tc
Some fixes done for TC001,TC002 and TC003 but these rules are excluded
since they don't play well with Pydantic.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
See https://docs.astral.sh/ruff/rules/#flake8-annotations-ann
The interest compared to only mypy is that ruff is very fast at
detecting missing annotations.
ANN101 and ANN102 are deprecated so we ignore them
ANN401 (no Any type) ignored to be in sync with mypy config
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
**Description**
Currently, when parsing a partial JSON, if a string ends with the escape
character, the whole key/value is removed. For example:
```
>>> from langchain_core.utils.json import parse_partial_json
>>> my_str = '{"foo": "bar", "baz": "qux\\'
>>>
>>> parse_partial_json(my_str)
{'foo': 'bar'}
```
My expectation (and with this fix) would be for `parse_partial_json()`
to return:
```
>>> from langchain_core.utils.json import parse_partial_json
>>>
>>> my_str = '{"foo": "bar", "baz": "qux\\'
>>> parse_partial_json(my_str)
{'foo': 'bar', 'baz': 'qux'}
```
Notes:
1. It could be argued that current behavior is still desired.
2. I have experienced this issue when the streaming output from an LLM
and the chunk happens to end with `\\`
3. I haven't included tests. Will do if change is accepted.
4. This is specially troublesome when this function is used by
187131c55c/libs/core/langchain_core/output_parsers/transform.py (L111)
since what happens is that, for example, if the received sequence of
chunks are: `{"foo": "b` , `ar\\` :
Then, the result of calling `self.parse_result()` is:
```
{"foo": "b"}
```
and the second time:
```
{}
```
Co-authored-by: Erick Friis <erick@langchain.dev>
TRY004 ("use TypeError rather than ValueError") existing errors are
marked as ignore to preserve backward compatibility.
LMK if you prefer to fix some of them.
Co-authored-by: Erick Friis <erick@langchain.dev>
(Inspired by https://github.com/langchain-ai/langchain/issues/26918)
We rely on some deprecated public functions in the hot path for tool
binding (`convert_pydantic_to_openai_function`,
`convert_python_function_to_openai_function`, and
`format_tool_to_openai_function`). My understanding is that what is
deprecated is not the functionality they implement, but use of them in
the public API -- we expect to continue to rely on them.
Here we update these functions to be private and not deprecated. We keep
the public, deprecated functions as simple wrappers that can be safely
deleted.
The `@deprecated` wrapper adds considerable latency due to its use of
the `inspect` module. This update speeds up `bind_tools` by a factor of
~100x:
Before:

After:

---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
Description:
Improved the `_parse_google_docstring` function in `langchain/core` to
support parsing multi-paragraph descriptions before the `Args:` section
while maintaining compliance with Google-style docstring guidelines.
This change ensures better handling of docstrings with detailed function
descriptions.
Issue:
Fixes#28628
Dependencies:
None.
Twitter handle:
@isatyamks
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "core: google docstring parsing fix"
- [x] **PR message**:
- **Description:** Added a solution for invalid parsing of google
docstring such as:
Args:
net_annual_income (float): The user's net annual income (in current year
dollars).
- **Issue:** Previous code would return arg = "net_annual_income
(float)" which would cause exception in
_validate_docstring_args_against_annotations
- **Dependencies:** None
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Co-authored-by: Erick Friis <erick@langchain.dev>
We have a test
[test_structured_few_shot_examples](ad4333ca03/libs/standard-tests/langchain_tests/integration_tests/chat_models.py (L546))
in standard integration tests that implements a version of tool-calling
few shot examples that works with ~all tested providers. The formulation
supported by ~all providers is: `human message, tool call, tool message,
AI reponse`.
Here we update
`langchain_core.utils.function_calling.tool_example_to_messages` to
support this formulation.
The `tool_example_to_messages` util is undocumented outside of our API
reference. IMO, if we are testing that this function works across all
providers, it can be helpful to feature it in our guides. The structured
few-shot examples we document at the moment require users to implement
this function and can be simplified.
Given the current erroring behavior, every time we've moved a kwarg from
model_kwargs and made it its own field that was a breaking change.
Updating this behavior to support the old instantiations /
serializations.
Assuming build_extra_kwargs was not something that itself is being used
externally and needs to be kept backwards compatible
This adds support for inject tool args that are arbitrary types when
used with pydantic 2.
We'll need to add similar logic on the v1 path, and potentially mirror
the config from the original model when we're doing the subset.
Ruff doesn't know about the python version in
`[tool.poetry.dependencies]`. It can get it from
`project.requires-python`.
Notes:
* poetry seems to have issues getting the python constraints from
`requires-python` and using `python` in per dependency constraints. So I
had to duplicate the info. I will open an issue on poetry.
* `inspect.isclass()` doesn't work correctly with `GenericAlias`
(`list[...]`, `dict[..., ...]`) on Python <3.11 so I added some `not
isinstance(type, GenericAlias)` checks:
Python 3.11
```pycon
>>> import inspect
>>> inspect.isclass(list)
True
>>> inspect.isclass(list[str])
False
```
Python 3.9
```pycon
>>> import inspect
>>> inspect.isclass(list)
True
>>> inspect.isclass(list[str])
True
```
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Hello.
First of all, thank you for maintaining such a great project.
## Description
In https://github.com/langchain-ai/langchain/pull/25123, support for
structured_output is added. However, `"additionalProperties": false`
needs to be included at all levels when a nested object is generated.
error from current code:
https://gist.github.com/fufufukakaka/e9b475300e6934853d119428e390f204
```
BadRequestError: Error code: 400 - {'error': {'message': "Invalid schema for response_format 'JokeWithEvaluation': In context=('properties', 'self_evaluation'), 'additionalProperties' is required to be supplied and to be false", 'type': 'invalid_request_error', 'param': 'response_format', 'code': None}}
```
Reference: [Introducing Structured Outputs in the
API](https://openai.com/index/introducing-structured-outputs-in-the-api/)
```json
{
"model": "gpt-4o-2024-08-06",
"messages": [
{
"role": "system",
"content": "You are a helpful math tutor."
},
{
"role": "user",
"content": "solve 8x + 31 = 2"
}
],
"response_format": {
"type": "json_schema",
"json_schema": {
"name": "math_response",
"strict": true,
"schema": {
"type": "object",
"properties": {
"steps": {
"type": "array",
"items": {
"type": "object",
"properties": {
"explanation": {
"type": "string"
},
"output": {
"type": "string"
}
},
"required": ["explanation", "output"],
"additionalProperties": false
}
},
"final_answer": {
"type": "string"
}
},
"required": ["steps", "final_answer"],
"additionalProperties": false
}
}
}
}
```
In the current code, `"additionalProperties": false` is only added at
the last level.
This PR introduces the `_add_additional_properties_key` function, which
recursively adds `"additionalProperties": false` to the entire JSON
schema for the request.
Twitter handle: `@fukkaa1225`
Thank you!
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
[langchain_core] Fix UnionType type var replacement
- Added types.UnionType to typing.Union mapping
Type replacement cause `TypeError: 'type' object is not subscriptable`
if any of union type comes as function `_py_38_safe_origin` return
`types.UnionType` instead of `typing.Union`
```python
>>> from types import UnionType
>>> from typing import Union, get_origin
>>> type_ = get_origin(str | None)
>>> type_
<class 'types.UnionType'>
>>> UnionType[(str, None)]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'type' object is not subscriptable
>>> Union[(str, None)]
typing.Optional[str]
```
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>