Commit Graph

1093 Commits

Author SHA1 Message Date
Bagatur
141f8e5ba4 openai[patch]: trace structured output as json schema 2025-02-27 15:54:08 -08:00
ccurme
6c7c8a164f openai[patch]: add unit test (#30022)
Test `max_completion_tokens` is propagated to payload for
AzureChatOpenAI.
2025-02-27 11:09:17 -05:00
ccurme
79f5bbfb26 anthropic[patch]: release 0.3.8 (#29973) 2025-02-24 15:24:35 -05:00
ccurme
ded886f622 anthropic[patch]: support claude 3.7 sonnet (#29971) 2025-02-24 15:17:47 -05:00
ccurme
b7a1705052 openai[patch]: release 0.3.7 (#29967) 2025-02-24 11:59:28 -05:00
ccurme
291a232fb8 openai[patch]: set global ssl context (#29932)
We set 
```python
global_ssl_context = ssl.create_default_context(cafile=certifi.where())
```
at the module-level and share it among httpx clients.
2025-02-24 11:25:16 -05:00
ccurme
b1a7f4e106 core, openai[patch]: support serialization of pydantic models in messages (#29940)
Resolves https://github.com/langchain-ai/langchain/issues/29003,
https://github.com/langchain-ai/langchain/issues/27264
Related: https://github.com/langchain-ai/langchain-redis/issues/52

```python
from langchain.chat_models import init_chat_model
from langchain.globals import set_llm_cache
from langchain_community.cache import SQLiteCache
from pydantic import BaseModel

cache = SQLiteCache()

set_llm_cache(cache)

class Temperature(BaseModel):
    value: int
    city: str

llm = init_chat_model("openai:gpt-4o-mini")
structured_llm = llm.with_structured_output(Temperature)
```
```python
# 681 ms
response = structured_llm.invoke("What is the average temperature of Rome in May?")
```
```python
# 6.98 ms
response = structured_llm.invoke("What is the average temperature of Rome in May?")
```
2025-02-24 09:34:27 -05:00
ccurme
927ec20b69 openai[patch]: update system role to developer for o-series models (#29785)
Some o-series models will raise a 400 error for `"role": "system"`
(`o1-mini` and `o1-preview` will raise, `o1` and `o3-mini` will not).

Here we update `ChatOpenAI` to update the role to `"developer"` for all
model names matching `^o\d`.

We only make this change on the ChatOpenAI class (not BaseChatOpenAI).
2025-02-24 08:59:46 -05:00
Ahmed Tammaa
8b511a3a78 [Exception Handling] DeepSeek JSONDecodeError (#29758)
For Context please check #29626 

The Deepseek is using langchain_openai. The error happens that it show
`json decode error`.

I added a handler for this to give a more sensible error message which
is DeepSeek API returned empty/invalid json.

Reproducing the issue is a bit challenging as it is inconsistent,
sometimes DeepSeek returns valid data and in other times it returns
invalid data which triggers the JSON Decode Error.

This PR is an exception handling, but not an ultimate fix for the issue.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-02-23 15:00:32 -05:00
ccurme
512eb1b764 anthropic[patch]: update models for integration tests (#29938) 2025-02-23 14:23:48 -05:00
Mohammad Mohtashim
8293142fa0 mistral[patch]: support model_kwargs (#29838)
- **Description:** Frequency_penalty added as a client parameter
- **Issue:** #29803

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-02-20 18:47:39 -05:00
ccurme
d227e4a08e mistralai[patch]: release 0.2.7 (#29906) 2025-02-20 17:27:12 +00:00
Hankyeol Kyung
2dd0ce3077 openai: Update reasoning_effort arg documentation (#29897)
**Description:** Update docstring for `reasoning_effort` argument to
specify that it applies to reasoning models only (e.g., OpenAI o1 and
o3-mini), clarifying its supported models.
**Issue:** None
**Dependencies:** None
2025-02-20 09:03:42 -05:00
ccurme
68b13e5172 pinecone: delete from monorepo (#29889)
This now lives in https://github.com/langchain-ai/langchain-pinecone
2025-02-19 12:55:15 -05:00
Erick Friis
6c1e21d128 core: basemessage.text() (#29078) 2025-02-18 17:45:44 -08:00
ccurme
5034a8dc5c xai[patch]: release 0.2.1 (#29854) 2025-02-17 14:30:41 -05:00
ccurme
83dcef234d xai[patch]: support dedicated structured output feature (#29853)
https://docs.x.ai/docs/guides/structured-outputs

Interface appears identical to OpenAI's.
```python
from langchain.chat_models import init_chat_model
from pydantic import BaseModel

class Joke(BaseModel):
    setup: str
    punchline: str

llm = init_chat_model("xai:grok-2").with_structured_output(
    Joke, method="json_schema"
)
llm.invoke("Tell me a joke about cats.")
```
2025-02-17 14:19:51 -05:00
ccurme
9d6fcd0bfb infra: add xai to scheduled testing (#29852) 2025-02-17 18:59:45 +00:00
Iris Liu
0d9f0b4215 docs: updates Chroma integration API ref docs (#29826)
- Description: updates Chroma integration API ref docs
- Issue: #29817
- Dependencies: N/A
- Twitter handle: @irieliu

Co-authored-by: “Iris <“liuirisny@gmail.com”>
2025-02-15 21:05:21 -05:00
ccurme
3fe7c07394 openai[patch]: release 0.3.6 (#29824) 2025-02-15 13:53:35 -05:00
ccurme
65a6dce428 openai[patch]: enable streaming for o1 (#29823)
Verified streaming works for the `o1-2024-12-17` snapshot as well.
2025-02-15 12:42:05 -05:00
ccurme
e4f106ea62 groq[patch]: remove xfails (#29794)
These appear to pass.
2025-02-13 15:49:50 -08:00
Erick Friis
1a225fad03 multiple: fix uv path deps (#29790)
file:// format wasn't working with updates - it doesn't install as an
editable dep

move to tool.uv.sources with path= instead
2025-02-13 21:32:34 +00:00
ccurme
16fb1f5371 chroma[patch]: release 0.2.2 (#29769)
Resolves https://github.com/langchain-ai/langchain/issues/29765
2025-02-13 02:39:16 +00:00
Mohammad Mohtashim
2310847c0f (Chroma): Small Fix in add_texts when checking for embeddings (#29766)
- **Description:** Small fix in `add_texts` to make embedding
nullability is checked properly.
- **Issue:** #29765

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-02-13 02:26:13 +00:00
Chaymae El Aattabi
4b08a7e8e8 Fix #29759: Use local chunk_size_ for looping in embed_documents (#29761)
This fix ensures that the chunk size is correctly determined when
processing text embeddings. Previously, the code did not properly handle
cases where chunk_size was None, potentially leading to incorrect
chunking behavior.

Now, chunk_size_ is explicitly set to either the provided chunk_size or
the default self.chunk_size, ensuring consistent chunking. This update
improves reliability when processing large text inputs in batches and
prevents unintended behavior when chunk_size is not specified.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-02-13 01:28:26 +00:00
ccurme
42ebf6ae0c deepseek[patch]: release 0.1.2 (#29742) 2025-02-11 11:53:43 -08:00
ccurme
ec55553807 pinecone[patch]: release 0.2.3 (#29741) 2025-02-11 19:27:39 +00:00
ccurme
001cf99253 pinecone[patch]: add support for python 3.13 (#29737) 2025-02-11 11:20:21 -08:00
ccurme
ba8f752bf5 openai[patch]: release 0.3.5 (#29740) 2025-02-11 19:20:11 +00:00
ccurme
9477f49409 openai, deepseek: make _convert_chunk_to_generation_chunk an instance method (#29731)
1. Make `_convert_chunk_to_generation_chunk` an instance method on
BaseChatOpenAI
2. Override on ChatDeepSeek to add `"reasoning_content"` to message
additional_kwargs.

Resolves https://github.com/langchain-ai/langchain/issues/29513
2025-02-11 11:13:23 -08:00
ccurme
d0c2dc06d5 mongodb[patch]: fix link in readme (#29738) 2025-02-11 18:19:59 +00:00
Marlene
4fa3ef0d55 Community/Partner: Adding Azure community and partner user agent to better track usage in Python (#29561)
- This pull request includes various changes to add a `user_agent`
parameter to Azure OpenAI, Azure Search and Whisper in the Community and
Partner packages. This helps in identifying the source of API requests
so we can better track usage and help support the community better. I
will also be adding the user_agent to the new `langchain-azure` repo as
well.

- No issue connected or  updated dependencies. 
- Utilises existing tests and docs

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2025-02-07 23:28:30 +00:00
Ella Charlaix
c401254770 huggingface: Add ipex support to HuggingFaceEmbeddings (#29386)
ONNX and OpenVINO models are available by specifying the `backend`
argument (the model is loaded using `optimum`
https://github.com/huggingface/optimum)

```python
from langchain_huggingface import HuggingFaceEmbeddings

embedding = HuggingFaceEmbeddings(
    model_name=model_id,
    model_kwargs={"backend": "onnx"},
)
```

With this PR we also enable the IPEX backend 



```python
from langchain_huggingface import HuggingFaceEmbeddings

embedding = HuggingFaceEmbeddings(
    model_name=model_id,
    model_kwargs={"backend": "ipex"},
)
```
2025-02-07 15:21:09 -08:00
ccurme
92e2239414 openai[patch]: make parallel_tool_calls explicit kwarg of bind_tools (#29669)
Improves discoverability and documentation.

cc @vbarda
2025-02-07 13:34:32 -05:00
Marc Ammann
5690575f13 openai: Removed tool_calls from completion chunk after other chunks have already been sent. (#29649)
- **Description:** Before sending a completion chunk at the end of an
OpenAI stream, removing the tool_calls as those have already been sent
as chunks.
- **Issue:** -
- **Dependencies:** -
- **Twitter handle:** -

@ccurme as mentioned in another PR

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-02-07 10:15:52 -05:00
Vincent Emonet
3645181d0e qdrant: Add similarity_search_with_score_by_vector() function to the QdrantVectorStore (#29641)
Added `similarity_search_with_score_by_vector()` function to the
`QdrantVectorStore` class.

It is required when we want to query multiple time with the same
embeddings. It was present in the now deprecated original `Qdrant`
vectorstore implementation, but was absent from the new one. It is also
implemented in a number of others `VectorStore` implementations

I have added tests for this new function

Note that I also argued in this discussion that it should be part of the
general `VectorStore`
https://github.com/langchain-ai/langchain/discussions/29638

Co-authored-by: Erick Friis <erick@langchain.dev>
2025-02-07 00:55:58 +00:00
ccurme
488cb4a739 anthropic: release 0.3.7 (#29653) 2025-02-06 17:05:57 -05:00
ccurme
ab09490c20 openai: release 0.3.4 (#29652) 2025-02-06 17:02:21 -05:00
ccurme
29a0c38cc3 openai[patch]: add test for message.name (#29651) 2025-02-06 16:49:28 -05:00
ccurme
3450bfc806 infra: add UV_FROZEN to makefiles (#29642)
These are set in Github workflows, but forgot to add them to most
makefiles for convenience when developing locally.

`uv run` will automatically sync the lock file. Because many of our
development dependencies are local installs, it will pick up version
changes and update the lock file. Passing `--frozen` or setting this
environment variable disables the behavior.
2025-02-06 14:36:54 -05:00
ccurme
d172984c91 infra: migrate to uv (#29566) 2025-02-06 13:36:26 -05:00
ZhangShenao
ac53977dbc [MistralAI] Improve MistralAIEmbeddings (#29242)
- Add static method decorator for method.
- Add expected exception for retry decorator

#29125
2025-02-05 21:31:54 -05:00
ccurme
91a33a9211 anthropic[patch]: release 0.3.6 (#29606) 2025-02-05 14:18:02 +00:00
ccurme
5cbe6aba8f anthropic[patch]: support citations in streaming (#29591) 2025-02-05 09:12:07 -05:00
Erick Friis
50d61eafa2 partners/deepseek: release 0.1.1 (#29592) 2025-02-04 23:46:38 +00:00
Erick Friis
7edfcbb090 docs: rename to langchain-deepseek in docs (#29587) 2025-02-04 14:22:17 -08:00
Erick Friis
df8fa882b2 deepseek: bump core (#29584) 2025-02-04 10:25:46 -08:00
Erick Friis
455f65947a deepseek: rename to langchain-deepseek from langchain-deepseek-official (#29583) 2025-02-04 17:57:25 +00:00
Teruaki Ishizaki
aeb42dc900 partners: Fixed the procedure of initializing pad_token_id (#29500)
- **Description:** Add to check pad_token_id and eos_token_id of model
config. It seems that this is the same bug as the HuggingFace TGI bug.
It's same bug as #29434
- **Issue:** #29431
- **Dependencies:** none
- **Twitter handle:** tell14

Example code is followings:
```python
from langchain_huggingface.llms import HuggingFacePipeline

hf = HuggingFacePipeline.from_model_id(
    model_id="meta-llama/Llama-3.2-3B-Instruct",
    task="text-generation",
    pipeline_kwargs={"max_new_tokens": 10},
)

from langchain_core.prompts import PromptTemplate

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

chain = prompt | hf

question = "What is electroencephalography?"

print(chain.invoke({"question": question}))
```
2025-02-03 21:40:33 -05:00