### PR Title:
**community: add latest OpenAI models pricing**
### Description:
This PR updates the OpenAI model cost calculation mapping by adding the
latest OpenAI models, **o1 (non-preview)** and **o3-mini**, based on the
pricing listed on the [OpenAI pricing
page](https://platform.openai.com/docs/pricing).
### Changes:
- Added pricing for `o1`, `o1-2024-12-17`, `o1-cached`, and
`o1-2024-12-17-cached` for input tokens.
- Added pricing for `o1-completion` and `o1-2024-12-17-completion` for
output tokens.
- Added pricing for `o3-mini`, `o3-mini-2025-01-31`, `o3-mini-cached`,
and `o3-mini-2025-01-31-cached` for input tokens.
- Added pricing for `o3-mini-completion` and
`o3-mini-2025-01-31-completion` for output tokens.
### Issue:
N/A
### Dependencies:
None
### Testing & Validation:
- No functional changes outside of updating the cost mapping.
- No tests were added or modified.
### Description
- Since there is no cost per 1k input tokens for a fine-tuned cached
version of `gpt-4o-mini-2024-07-18` is not available when using the
`OpenAICallbackHandler`, it raises an error when trying to make calls
with such model.
- To add the price in the `MODEL_COST_PER_1K_TOKENS` dictionary
cc. @efriis
In the previous commit, the cached model key for this model was omitted.
When using the "gpt-4o-2024-11-20" model, the token count in the
callback appeared as 0, and the cost was recorded as 0.
We add model and cost information so that the token count and cost can
be displayed for the respective model.
- The message before modification is as follows.
```
Tokens Used: 0
Prompt Tokens: 0
Prompt Tokens Cached: 0
Completion Tokens: 0
Reasoning Tokens: 0
Successful Requests: 0
Total Cost (USD): $0.0
```
- The message after modification is as follows.
```
Tokens Used: 3783
Prompt Tokens: 3625
Prompt Tokens Cached: 2560
Completion Tokens: 158
Reasoning Tokens: 0
Successful Requests: 1
Total Cost (USD): $0.010642500000000001
```
- **Description:** update MODEL_COST_PER_1K_TOKENS for new gpt-4o-11-20.
- **Issue:** with latest gpt-4o-11-20, openai callback return
token_cost=0.0
- **Dependencies:** None (just simple dict fix.)
- **Twitter handle:** I Don't Use Twitter.
- (However..., I have a YouTube channel. Could you upload this there, by
any chance?
https://www.youtube.com/@%EA%B2%9C%EC%B0%BD%EB%B6%80%EA%B3%A0%EB%AC%B8AI%EC%9E%90%EB%AC%B8%EC%84%BC%EC%84%B8)
Ref: https://openai.com/pricing
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description:** Added the new gpt-3.5-turbo-1106 for **finetuned** cost
calculation,
**Issue:** no issue found open
By the information in OpenAI the pricing is the same as the older model
(0613)
While using `chain.batch`, the default implementation uses a
`ThreadPoolExecutor` and run the chains in separate threads. An issue
with this approach is that that [the token counting
callback](https://python.langchain.com/docs/modules/callbacks/token_counting)
fails to work as a consequence of the context not being propagated
between threads. This PR adds context propagation to the new threads and
adds some thread synchronization in the OpenAI callback. With this
change, the token counting callback works as intended.
Having the context propagation change would be highly beneficial for
those implementing custom callbacks for similar functionalities as well.
---------
Co-authored-by: Nuno Campos <nuno@langchain.dev>