The vectorstore feature table in the documentation was showing incorrect
information for the "IDs in add Documents" capability. Most vectorstores
were marked as ❌ (not supported) when they actually support extracting
IDs from documents.
## Problem
The issue was an inconsistency between two sources of truth:
- **JavaScript feature table** (`docs/src/theme/FeatureTables.js`):
Hardcoded `idsInAddDocuments: false` for most vectorstores
- **Python script** (`docs/scripts/vectorstore_feat_table.py`):
Correctly showed `"IDs in add Documents": True` for most vectorstores
## Root Cause
All vectorstores inherit the base `VectorStore.add_documents()` method
which automatically extracts document IDs:
```python
# From libs/core/langchain_core/vectorstores/base.py lines 277-284
if "ids" not in kwargs:
ids = [doc.id for doc in documents]
# If there's at least one valid ID, we'll assume that IDs should be used.
if any(ids):
kwargs["ids"] = ids
```
Since no vectorstores override `add_documents()`, they all inherit this
behavior and support IDs in documents.
## Solution
Updated `idsInAddDocuments` from `false` to `true` for 13 vectorstores:
- AstraDBVectorStore, Chroma, Clickhouse, DatabricksVectorSearch
- ElasticsearchStore, FAISS, InMemoryVectorStore,
MongoDBAtlasVectorSearch
- PGVector, PineconeVectorStore, Redis, Weaviate, SQLServer
The other 4 vectorstores (CouchbaseSearchVectorStore, Milvus, openGauss,
QdrantVectorStore) were already correctly marked as `true`.
## Impact
Users visiting
https://python.langchain.com/docs/integrations/vectorstores/ will now
see accurate information. The "IDs in add Documents" column will
correctly show ✅ for all vectorstores instead of incorrectly showing ❌
for most of them.
This aligns with the API documentation which states: "if kwargs contains
ids and documents contain ids, the ids in the kwargs will receive
precedence" - clearly indicating that document IDs are supported.
Fixes#30622.
<!-- START COPILOT CODING AGENT TIPS -->
---
💬 Share your feedback on Copilot coding agent for the chance to win a
$200 gift card! Click
[here](https://survey.alchemer.com/s3/8343779/Copilot-Coding-agent) to
start the survey.
---------
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mdrxy <61371264+mdrxy@users.noreply.github.com>
## **Description:**
This PR updates the `link` values for the following integration metadata
entries:
1. **VertexAILLM**
- Changed from: `google_vertexai`
- To: `google_vertex_ai_palm`
2. **NVIDIA**
- Changed from: `NVIDIA`
- To: `nvidia_ai_endpoints`
These changes ensure that the documentation links correspond to the
correct integration paths, improving documentation navigation and
consistency with the integration structure.
## **Issue:** N/A
## **Dependencies:** None
## **Twitter handle:** N/A
Co-authored-by: Mason Daugherty <mason@langchain.dev>
- **Description:** This PR updates the `package` field for the VertexAI
integration in the documentation metadata. The original value was
`langchain-google_vertexai`, which has been corrected to
`langchain-google-vertexai` to reflect the actual package name used in
PyPI and LangChain integrations.
- **Issue:** N/A
- **Dependencies:** None
- **Twitter handle:** N/A
- **Description:** Corrected the `link` path in the Google Gemini
integration entry from
`/docs/integrations/text_embedding/google-generative-ai` to
`/docs/integrations/text_embedding/google_generative_ai` to align with
actual directory structure and prevent broken documentation links.
- **Issue:** N/A
- **Dependencies:** None
- **Twitter handle:** N/A
Extend Google parameters in the embeddings tab to include Google GenAI
(Gemini)
**Description:** Update embeddings tab to include example for Google
GenAI (Gemini)
**Issue:** N/A
**Dependencies:** N/A
**Twitter handle:** N/A
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
This PR adds Google Gemini (via AI Studio and Gemini API). Feel free to
change the ordering, if needed.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Hey LangChain community! 👋 Excited to propose official documentation for
our new openGauss integration that brings powerful vector capabilities
to the stack!
### What's Inside 📦
1. **Full Integration Guide**
Introducing
[langchain-opengauss](https://pypi.org/project/langchain-opengauss/) on
PyPI - your new toolkit for:
🔍 Native hybrid search (vectors + metadata)
🚀 Production-grade connection pooling
🧩 Automatic schema management
2. **Rigorous Testing Passed** ✅

- 100% non-async test coverage
ps: Current implementation resides in my personal repository:
https://github.com/mpb159753/langchain-opengauss, How can I transfer
process to langchain-ai org?? *Keen to hear your thoughts and make this
integration shine!* ✨
---------
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Perplexity's importance in the space has been growing, so we think it's
time to add an official integration!
Note: following the release of `langchain-perplexity` to `pypi`, we
should be able to add `perplexity` as an extra in
`libs/langchain/pyproject.toml`, but we're blocked by a circular import
for now.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Description: Update vector store tab inits to match either the docs or
api_ref (whichever was more comprehensive)
List of changes per vector stores:
- In-memory
- no change
- AstraDB
- match to docs - docs/api_refs match (excluding embeddings)
- Chroma
- match to docs - api_refs is less descriptive
- FAISS
- match to docs - docs/api_refs match (excluding embeddings)
- Milvus
- match to docs to use Milvus Lite with Flat index - api_refs does not
have index_param for generalization
- MongoDB
- match to docs - api_refs are sparser
- PGVector
- match to api_ref
- changed to include docker cmd directly in code
- docs/api_ref has comment to view docker command in separate code block
- Pinecone
- match to api_refs - docs have code dispersed
- Qdrant
- match to api_ref - docs has size=3072, api_ref has size=1536
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "docs: add xAI to ChatModelTabs"
- [ ] **PR message**:
- **Description:** Added `ChatXAI` to `ChatModelTabs` dropdown to
improve visibility of xAI chat models (e.g., "grok-2", "grok-3").
- **Issue:** Follow-up to #30010
- **Dependencies:** none
- **Twitter handle:** @tiestvangool
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
## PyMuPDF4LLM integration to LangChain for PDF content extraction in
Markdown format
### Description
[PyMuPDF4LLM](https://github.com/pymupdf/RAG) makes it easier to extract
PDF content in Markdown format, needed for LLM & RAG applications.
(License: GNU Affero General Public License v3.0)
[langchain-pymupdf4llm](https://github.com/lakinduboteju/langchain-pymupdf4llm)
integrates PyMuPDF4LLM to LangChain as a Document Loader.
(License: MIT License)
This pull request introduces the integration of
[PyMuPDF4LLM](https://pymupdf.readthedocs.io/en/latest/pymupdf4llm) into
the LangChain project as an integration package:
[`langchain-pymupdf4llm`](https://github.com/lakinduboteju/langchain-pymupdf4llm).
The most important changes include adding new Jupyter notebooks to
document the integration and updating the package configuration file to
include the new package.
### Documentation:
* `docs/docs/integrations/providers/pymupdf4llm.ipynb`: Added a new
Jupyter notebook to document the integration of `PyMuPDF4LLM` with
LangChain, including installation instructions and class imports.
* `docs/docs/integrations/document_loaders/pymupdf4llm.ipynb`: Added a
new Jupyter notebook to document the usage of `langchain-pymupdf4llm` as
a LangChain integration package in detail.
### Package registration:
* `libs/packages.yml`: Updated the package configuration file to include
the `langchain-pymupdf4llm` package.
### Additional information
* Related to: https://github.com/langchain-ai/langchain/pull/29848
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
Rename IBM product name to `IBM watsonx`
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Thank you for contributing to LangChain!
Fix `model_id` in IBM provider on EmbeddingTabs page
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Thank you for contributing to LangChain!
Added IBM to ChatModelTabs and EmbeddingTabs
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
### Description
This PR adds docs for the
[langchain-hyperbrowser](https://pypi.org/project/langchain-hyperbrowser/)
package. It includes a document loader that uses Hyperbrowser to scrape
or crawl any urls and return formatted markdown or html content as well
as relevant metadata.
[Hyperbrowser](https://hyperbrowser.ai) is a platform for running and
scaling headless browsers. It lets you launch and manage browser
sessions at scale and provides easy to use solutions for any webscraping
needs, such as scraping a single page or crawling an entire site.
### Issue
None
### Dependencies
None
### Twitter Handle
`@hyperbrowser`
Add upstage document parse loader to pdf loaders
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
- Title: Fix typo to correct "embedding" to "embeddings" in PGVector
initialization example
- Problem: There is a typo in the example code for initializing the
PGVector class. The current parameter "embedding" is incorrect as the
class expects "embeddings".
- Correction: The corrected code snippet is:
vector_store = PGVector(
embeddings=embeddings,
collection_name="my_docs",
connection="postgresql+psycopg://...",
)
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
**Description:**
Adding VoyageAI's text_embedding to 'integrations/text_embedding/'
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
**Description:** Adding Documentation for new SQL Server Vector Store
Package.
Changed files -
Added new Vector Store -
docs\docs\integrations\vectorstores\sqlserver.ipynb
FeatureTable.Js - docs\src\theme\FeatureTables.js
Microsoft.mdx - docs\docs\integrations\providers\microsoft.mdx
Detailed documentation on API -
https://python.langchain.com/api_reference/sqlserver/index.html
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
Add `ChatDatabricks` to the list of LLM models options.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Signed-off-by: Prithvi Kannan <prithvi.kannan@databricks.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** Corrected the parameter name in the
HuggingFaceEmbeddings documentation under integrations/text_embedding/
from model to model_name to align with the actual code usage in the
langchain_huggingface package.
- **Issue:** Fixes#28231
- **Dependencies:** None