```markdown
**Description:**
This PR integrates Valthera into LangChain, introducing an framework designed to send highly personalized nudges by an LLM agent. This is modeled after Dr. BJ Fogg's Behavior Model. This integration includes:
- Custom data connectors for HubSpot, PostHog, and Snowflake.
- A unified data aggregator that consolidates user data.
- Scoring configurations to compute motivation and ability scores.
- A reasoning engine that determines the appropriate user action.
- A trigger generator to create personalized messages for user engagement.
**Issue:**
N/A
**Dependencies:**
N/A
**Twitter handle:**
- `@vselvarajijay`
**Tests and Docs:**
- `docs/docs/integrations/tools/valthera`
- `https://github.com/valthera/langchain-valthera/tree/main/tests`
```
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
**Description:** adds ContextualAI's `langchain-contextual` package's
documentation
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
The OpenAI API requires function names to match the pattern
'^[a-zA-Z0-9_-]+$'. This updates the JIRA toolkit's tool names to use
underscores instead of spaces to comply with this requirement and
prevent BadRequestError when using the tools with OpenAI functions.
Error fixed:
```
File "langgraph-bug-fix/.venv/lib/python3.13/site-packages/openai/_base_client.py", line 1023, in _request
raise self._make_status_error_from_response(err.response) from None
openai.BadRequestError: Error code: 400 - {'error': {'message': "Invalid 'tools[0].function.name': string does not match pattern. Expected a string that matches the pattern '^[a-zA-Z0-9_-]+$'.", 'type': 'invalid_request_error', 'param': 'tools[0].function.name', 'code': 'invalid_value'}}
During task with name 'agent' and id 'aedd7537-e8d5-6678-d0c5-98129586d3ac'
```
Issue:#30182
Thank you for contributing to LangChain!
- [ ] **PR title**: "community: chinese doc extracting"
- [ ] **PR message**:
- **Description:** add jieba_link_extractor.py for chinese doc
extracting
- **Dependencies:** jieba
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
/doc/doc/integrations/providers/jieba.md
/doc/doc/integrations/vectorstores/jieba_link_extractor.ipynb
/libs/packages.yml
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Groq is retiring `mixtral-8x7b-32768`, which is currently the default
model for ChatGroq, on March 20. Here we emit a warning if the model is
not specified explicitly.
A version 0.3.0 will be released ahead of March 20 that removes the
default altogether.
docs: New integration for LangChain - ads4gpts-langchain
Description: Tools and Toolkit for Agentic integration natively within
LangChain with ADS4GPTs, in order to help applications monetize with
advertising.
Twitter handle: @ads4gpts
Co-authored-by: knitlydevaccount <loom+github@knitly.app>
- **Description: a notebook showing langchain and langraph agents using
the new langchain_tableau tool
- **Twitter handle: @joe_constantin0
---------
Co-authored-by: Joe Constantino <joe@constantino.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- Support thinking blocks in core's `convert_to_openai_messages` (pass
through instead of error)
- Ignore thinking blocks in ChatOpenAI (instead of error)
- Support Anthropic-style image blocks in ChatOpenAI
---
Standard integration tests include a `supports_anthropic_inputs`
property which is currently enabled only for tests on `ChatAnthropic`.
This test enforces compatibility with message histories of the form:
```
- system message
- human message
- AI message with tool calls specified only through `tool_use` content blocks
- human message containing `tool_result` and an additional `text` block
```
It additionally checks support for Anthropic-style image inputs if
`supports_image_inputs` is enabled.
Here we change this test, such that if you enable
`supports_anthropic_inputs`:
- You support AI messages with text and `tool_use` content blocks
- You support Anthropic-style image inputs (if `supports_image_inputs`
is enabled)
- You support thinking content blocks.
That is, we add a test case for thinking content blocks, but we also
remove the requirement of handling tool results within HumanMessages
(motivated by existing agent abstractions, which should all return
ToolMessage). We move that requirement to a ChatAnthropic-specific test.
**Description:**
This PR adds a call to `guard_import()` to fix an AttributeError raised
when creating LanceDB vectorstore instance with an existing LanceDB
table.
**Issue:**
This PR fixes issue #30124.
**Dependencies:**
No additional dependencies.
**Twitter handle:**
[@metadaddy](https://x.com/metadaddy), but I spend more time at
[@metadaddy.net](https://bsky.app/profile/metadaddy.net) these days.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
## Description
make DashScope models support Partial Mode for text continuation.
For text continuation in ChatTongYi, it supports text continuation with
a prefix by adding a "partial" argument in AIMessage. The document is
[Partial Mode
](https://help.aliyun.com/zh/model-studio/user-guide/partial-mode?spm=a2c4g.11186623.help-menu-2400256.d_1_0_0_8.211e5b77KMH5Pn&scm=20140722.H_2862210._.OR_help-T_cn~zh-V_1).
The API example is:
```py
import os
import dashscope
messages = [{
"role": "user",
"content": "请对“春天来了,大地”这句话进行续写,来表达春天的美好和作者的喜悦之情"
},
{
"role": "assistant",
"content": "春天来了,大地",
"partial": True
}]
response = dashscope.Generation.call(
api_key=os.getenv("DASHSCOPE_API_KEY"),
model='qwen-plus',
messages=messages,
result_format='message',
)
print(response.output.choices[0].message.content)
```
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description**: Added the request_id field to the check_response
function to improve request tracking and debugging, applicable for the
Tongyi model.
- **Issue**: None
- **Dependencies**: None
- **Twitter handle**: None
- **Add tests and docs**: None
- **Lint and test**: Ran `make format`, `make lint`, and `make test` to
ensure the code meets formatting and testing requirements.
### **Description**
Converts the boolean `jira_cloud` parameter in the Jira API Wrapper to a
string before initializing the Jira Client. Also adds tests for the
same.
### **Issue**
[Jira API Wrapper
Bug](8abb65e138/libs/community/langchain_community/utilities/jira.py (L47))
```python
jira_cloud_str = get_from_dict_or_env(values, "jira_cloud", "JIRA_CLOUD")
jira_cloud = jira_cloud_str.lower() == "true"
```
The above code has a bug where the value of `"jira_cloud"` is a boolean.
If it is passed, calling `.lower()` on a boolean raises an error.
Additionally, `False` cannot be passed explicitly since
`get_from_dict_or_env` falls back to environment variables.
Relevant code in `langchain_core`:
[Source](https://github.com/thesmallstar/langchain/blob/master/.venv/lib/python3.13/site-packages/langchain_core/utils/env.py#L46)
```python
if isinstance(key, str) and key in data and data[key]: # Here, data[key] is False
```
This PR fixes both issues.
### **Twitter Handle**
[Manthan Surkar](https://x.com/manthan_surkar)
This PR adds documentation for the langchain-taiga Tool integration,
including an example notebook at
'docs/docs/integrations/tools/taiga.ipynb' and updates to
'libs/packages.yml' to track the new package.
Issue:
N/A
Dependencies:
None
Twitter handle:
N/A
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
PR Title:
langchain: add attachments support in OpenAIAssistantRunnable
PR Description:
This PR fixes an issue with the "retrieval" tool (internally named
"file_search") in the OpenAI Assistant by adding support for the
"attachments" parameter in the invoke method. This change allows files
to be linked to messages when they are inserted into threads, which is
essential for utilizing OpenAI's Retrieval Augmented Generation (RAG)
feature.
Issue:
N/A
Dependencies:
None
Twitter handle:
N/A
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** Fix typo in code samples for max_tokens_for_prompt.
Code blocks had singular "token" but the method has plural "tokens".
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** N/A
**Description:**
5 fix of example from function with_alisteners() in
libs/core/langchain_core/runnables/base.py
Replace incoherent example output with workable example's output.
1. SyntaxError: unterminated string literal
print(f"on start callback starts at {format_t(time.time())}
correct as
print(f"on start callback starts at {format_t(time.time())}")
2. SyntaxError: unterminated string literal
print(f"on end callback starts at {format_t(time.time())}
correct as
print(f"on end callback starts at {format_t(time.time())}")
3. NameError: name 'Runnable' is not defined
Fix as
from langchain_core.runnables import Runnable
4. NameError: name 'asyncio' is not defined
Fix as
import asyncio
5. NameError: name 'format_t' is not defined.
Implement format_t() as
from datetime import datetime, timezone
def format_t(timestamp: float) -> str:
return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()
add batch_size to fix oom when embed large amount texts
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Structured output will currently always raise a BadRequestError when
Claude 3.7 Sonnet's `thinking` is enabled, because we rely on forced
tool use for structured output and this feature is not supported when
`thinking` is enabled.
Here we:
- Emit a warning if `with_structured_output` is called when `thinking`
is enabled.
- Raise `OutputParserException` if no tool calls are generated.
This is arguably preferable to raising an error in all cases.
```python
from langchain_anthropic import ChatAnthropic
from pydantic import BaseModel
class Person(BaseModel):
name: str
age: int
llm = ChatAnthropic(
model="claude-3-7-sonnet-latest",
max_tokens=5_000,
thinking={"type": "enabled", "budget_tokens": 2_000},
)
structured_llm = llm.with_structured_output(Person) # <-- this generates a warning
```
```python
structured_llm.invoke("Alice is 30.") # <-- works
```
```python
structured_llm.invoke("Hello!") # <-- raises OutputParserException
```
Took a "census" of models supported by init_chat_model-- of those that
return model names in response metadata, these were the only two that
had it keyed under `"model"` instead of `"model_name"`.
- [ ] **PR title**: [langchain_community.llms.xinference]: Add
asynchronous generate interface
- [ ] **PR message**: The asynchronous generate interface support stream
data and non-stream data.
chain = prompt | llm
async for chunk in chain.astream(input=user_input):
yield chunk
- [ ] **Add tests and docs**:
from langchain_community.llms import Xinference
from langchain.prompts import PromptTemplate
llm = Xinference(
server_url="http://0.0.0.0:9997", # replace your xinference server url
model_uid={model_uid} # replace model_uid with the model UID return from
launching the model
stream = True
)
prompt = PromptTemplate(input=['country'], template="Q: where can we
visit in the capital of {country}? A:")
chain = prompt | llm
async for chunk in chain.astream(input=user_input):
yield chunk
Thank you for contributing to LangChain!
- **Implementing the MMR algorithm for OLAP vector storage**:
- Support Apache Doris and StarRocks OLAP database.
- Example: "vectorstore.as_retriever(search_type="mmr",
search_kwargs={"k": 10})"
- **Implementing the MMR algorithm for OLAP vector storage**:
- **Apache Doris
- **StarRocks
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- **Add tests and docs**:
- Example: "vectorstore.as_retriever(search_type="mmr",
search_kwargs={"k": 10})"
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: fakzhao <fakzhao@cisco.com>
This pull request includes a change to the `TavilySearchResults` class
in the `tool.py` file, which updates the code block format in the
documentation.
Documentation update:
*
[`libs/community/langchain_community/tools/tavily_search/tool.py`](diffhunk://#diff-e3b6a980979268b639c6a86e9b182756b0f7c7e9e5605e613bc0a72ea6aa5301L54-R59):
Changed the code block format from Python to JSON in the example
provided in the docstring.Thank you for contributing to LangChain!
## **Description:**
When using the Tavily retriever with include_raw_content=True, the
retriever occasionally fails with a Pydantic ValidationError because
raw_content can be None.
The Document model in langchain_core/documents/base.py requires
page_content to be a non-None value, but the Tavily API sometimes
returns None for raw_content.
This PR fixes the issue by ensuring that even when raw_content is None,
an empty string is used instead:
```python
page_content=result.get("content", "")
if not self.include_raw_content
else (result.get("raw_content") or ""),
This pull request includes updates to the
`libs/community/langchain_community/callbacks/bedrock_anthropic_callback.py`
file to add a new model version to the list of supported models.
Updates to supported models:
* Added support for the `anthropic.claude-3-7-sonnet-20250219-v1:0`
model with a rate of `0.003` for 1000 input tokens.
* Added support for the `anthropic.claude-3-7-sonnet-20250219-v1:0`
model with a rate of `0.015` for 1000 output tokens.
AWS Bedrock pricing reference : https://aws.amazon.com/bedrock/pricing
## PyMuPDF4LLM integration to LangChain for PDF content extraction in
Markdown format
### Description
[PyMuPDF4LLM](https://github.com/pymupdf/RAG) makes it easier to extract
PDF content in Markdown format, needed for LLM & RAG applications.
(License: GNU Affero General Public License v3.0)
[langchain-pymupdf4llm](https://github.com/lakinduboteju/langchain-pymupdf4llm)
integrates PyMuPDF4LLM to LangChain as a Document Loader.
(License: MIT License)
This pull request introduces the integration of
[PyMuPDF4LLM](https://pymupdf.readthedocs.io/en/latest/pymupdf4llm) into
the LangChain project as an integration package:
[`langchain-pymupdf4llm`](https://github.com/lakinduboteju/langchain-pymupdf4llm).
The most important changes include adding new Jupyter notebooks to
document the integration and updating the package configuration file to
include the new package.
### Documentation:
* `docs/docs/integrations/providers/pymupdf4llm.ipynb`: Added a new
Jupyter notebook to document the integration of `PyMuPDF4LLM` with
LangChain, including installation instructions and class imports.
* `docs/docs/integrations/document_loaders/pymupdf4llm.ipynb`: Added a
new Jupyter notebook to document the usage of `langchain-pymupdf4llm` as
a LangChain integration package in detail.
### Package registration:
* `libs/packages.yml`: Updated the package configuration file to include
the `langchain-pymupdf4llm` package.
### Additional information
* Related to: https://github.com/langchain-ai/langchain/pull/29848
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** Same changes as #26593 but for FileCallbackHandler
- **Issue:** Fixes#29941
- **Dependencies:** None
- **Twitter handle:** None
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
See https://docs.astral.sh/ruff/rules/#flake8-type-checking-tc
Some fixes done for TC001,TC002 and TC003 but these rules are excluded
since they don't play well with Pydantic.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
**Issue**: This trigger can only be used by the first table created.
Cannot create additional triggers for other tables.
**fixed**: Update the trigger name so that it can be used for new
tables.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
**Description:**
Tavily search results returned from API include useful information like
title, score and (optionally) raw_content that is missed in wrapper
although it's documented there properly. Add this data to the result
structure.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Resolves https://github.com/langchain-ai/langchain/issues/29951
Was able to reproduce the issue with Anthropic installing from pydantic
`main` and correct it with the fix recommended in the issue.
Thanks very much @Viicos for finding the bug and the detailed writeup!
Resolves https://github.com/langchain-ai/langchain/issues/29003,
https://github.com/langchain-ai/langchain/issues/27264
Related: https://github.com/langchain-ai/langchain-redis/issues/52
```python
from langchain.chat_models import init_chat_model
from langchain.globals import set_llm_cache
from langchain_community.cache import SQLiteCache
from pydantic import BaseModel
cache = SQLiteCache()
set_llm_cache(cache)
class Temperature(BaseModel):
value: int
city: str
llm = init_chat_model("openai:gpt-4o-mini")
structured_llm = llm.with_structured_output(Temperature)
```
```python
# 681 ms
response = structured_llm.invoke("What is the average temperature of Rome in May?")
```
```python
# 6.98 ms
response = structured_llm.invoke("What is the average temperature of Rome in May?")
```
Some o-series models will raise a 400 error for `"role": "system"`
(`o1-mini` and `o1-preview` will raise, `o1` and `o3-mini` will not).
Here we update `ChatOpenAI` to update the role to `"developer"` for all
model names matching `^o\d`.
We only make this change on the ChatOpenAI class (not BaseChatOpenAI).
For Context please check #29626
The Deepseek is using langchain_openai. The error happens that it show
`json decode error`.
I added a handler for this to give a more sensible error message which
is DeepSeek API returned empty/invalid json.
Reproducing the issue is a bit challenging as it is inconsistent,
sometimes DeepSeek returns valid data and in other times it returns
invalid data which triggers the JSON Decode Error.
This PR is an exception handling, but not an ultimate fix for the issue.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
**Description:** As commented on the commit
[41b6a86](41b6a86bbe)
it introduced a bug for when we do an embedding request and the model
returns a non-nested list. Typically it's the case for model
**_nomic-embed-text_**.
- I added the unit test, and ran `make format`, `make lint` and `make
test` from the `community` package.
- No new dependency.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- [x] **PR title**: docs: (community) update ChatLiteLLM
- [x] **PR message**:
- **Description:** updated description of model_kwargs parameter which
was wrongly describing for temperature.
- **Issue:** #29862
- **Dependencies:** N/A
- [x] **Add tests and docs**: N/A
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
See https://docs.astral.sh/ruff/rules/#flake8-annotations-ann
The interest compared to only mypy is that ruff is very fast at
detecting missing annotations.
ANN101 and ANN102 are deprecated so we ignore them
ANN401 (no Any type) ignored to be in sync with mypy config
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
## Which area of LangChain is being modified?
- This PR adds a new "Permit" integration to the `docs/integrations/`
folder.
- Introduces two new Tools (`LangchainJWTValidationTool` and
`LangchainPermissionsCheckTool`)
- Introduces two new Retrievers (`PermitSelfQueryRetriever` and
`PermitEnsembleRetriever`)
- Adds demo scripts in `examples/` showcasing usage.
## Description of Changes
- Created `langchain_permit/tools.py` for JWT validation and permission
checks with Permit.
- Created `langchain_permit/retrievers.py` for custom Permit-based
retrievers.
- Added documentation in `docs/integrations/providers/permit.ipynb` (or
`.mdx`) to explain setup, usage, and examples.
- Provided sample scripts in `examples/demo_scripts/` to illustrate
usage of these tools and retrievers.
- Ensured all code is linted and tested locally.
Thank you again for reviewing!
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:**
Since mlx_lm 0.20, all calls to mlx crash due to deprecation of the way
parameters are passed to methods generate and generate_step.
Parameters top_p, temp, repetition_penalty and repetition_context_size
are not passed directly to those method anymore but wrapped into
"sampler" and "logit_processor".
- **Dependencies:** mlx_lm (optional)
- **Tests:**
I've had a new test to existing test file:
tests/integration_tests/llms/test_mlx_pipeline.py
---------
Co-authored-by: Jean-Philippe Dournel <jp@insightkeeper.io>
# community: Fix AttributeError in RankLLMRerank (`list` object has no
attribute `candidates`)
## **Description**
This PR fixes an issue in `RankLLMRerank` where reranking fails with the
following error:
```
AttributeError: 'list' object has no attribute 'candidates'
```
The issue arises because `rerank_batch()` returns a `List[Result]`
instead of an object containing `.candidates`.
### **Changes Introduced**
- Adjusted `compress_documents()` to support both:
- Old API format: `rerank_results.candidates`
- New API format: `rerank_results` as a list
- Also fix wrong .txt location parsing while I was at it.
---
## **Issue**
Fixes **AttributeError** in `RankLLMRerank` when using
`compression_retriever.invoke()`. The issue is observed when
`rerank_batch()` returns a list instead of an object with `.candidates`.
**Relevant log:**
```
AttributeError: 'list' object has no attribute 'candidates'
```
## **Dependencies**
- No additional dependencies introduced.
---
## **Checklist**
- [x] **Backward compatible** with previous API versions
- [x] **Tested** locally with different RankLLM models
- [x] **No new dependencies introduced**
- [x] **Linted** with `make format && make lint`
- [x] **Ready for review**
---
## **Testing**
- Ran `compression_retriever.invoke(query)`
## **Reviewers**
If no review within a few days, please **@mention** one of:
- @baskaryan
- @efriis
- @eyurtsev
- @ccurme
- @vbarda
- @hwchase17
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
This PR adds a new cognee integration, knowledge graph based retrieval
enabling developers to ingest documents into cognee’s knowledge graph,
process them, and then retrieve context via CogneeRetriever.
It includes:
- langchain_cognee package with a CogneeRetriever class
- a test for the integration, demonstrating how to create, process, and
retrieve with cognee
- an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
Followed additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
Thank you for the review!
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
**Description:** Two small changes have been proposed here:
(1)
Previous code assumes that every issue has a priority field. If an issue
lacks this field, the code will raise a KeyError.
Now, the code checks if priority exists before accessing it. If priority
is missing, it assigns None instead of crashing. This prevents runtime
errors when processing issues without a priority.
(2)
Also If the "style" field is missing, the code throws a KeyError.
`.get("style", None)` safely retrieves the value if present.
**Issue:** #29875
**Dependencies:** N/A
Thank you for contributing to LangChain!
- [ ] **Handled query records properly**: "community:
vectorstores/kinetica"
- [ ] **Bugfix for empty query results handling**:
- **Description:** checked for the number of records returned by a query
before processing further
- **Issue:** resulted in an `AttributeError` earlier which has now been
fixed
@efriis
This PR adds documentation for the Azure AI package in Langchain to the
main mono-repo
No issue connected or updated dependencies.
Utilises existing tests and makes updates to the docs
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
**Description:** Update docstring for `reasoning_effort` argument to
specify that it applies to reasoning models only (e.g., OpenAI o1 and
o3-mini), clarifying its supported models.
**Issue:** None
**Dependencies:** None
Adds a `attachment_filter_func` parameter to the ConfluenceLoader class
which can be used to determine which files are indexed. This is useful
if you are interested in excluding files based on their media type or
other metadata.
https://docs.x.ai/docs/guides/structured-outputs
Interface appears identical to OpenAI's.
```python
from langchain.chat_models import init_chat_model
from pydantic import BaseModel
class Joke(BaseModel):
setup: str
punchline: str
llm = init_chat_model("xai:grok-2").with_structured_output(
Joke, method="json_schema"
)
llm.invoke("Tell me a joke about cats.")
```
- **Description:** add deprecation warning when using weaviate from
langchain_community
- **Issue:** NA
- **Dependencies:** NA
- **Twitter handle:** NA
---------
Signed-off-by: hsm207 <hsm207@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Add `model` properties for OpenAIWhisperParser. Defaulted to `whisper-1`
(previous value).
Please help me update the docs and other related components of this
repo.
**Description:**
This PR adds a Jupyter notebook that explains the features,
installation, and usage of the
[`langchain-salesforce`](https://github.com/colesmcintosh/langchain-salesforce)
package. The notebook includes:
- Setup instructions for configuring Salesforce credentials
- Example code demonstrating common operations such as querying,
describing objects, creating, updating, and deleting records
**Issue:**
N/A
**Dependencies:**
No new dependencies are required.
**Tests and Docs:**
- Added an example notebook demonstrating the usage of the
`langchain-salesforce` package, located in `docs/docs/integrations`.
**Lint and Test:**
- Ran `make format`, `make lint`, and `make test` successfully.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [X] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
- [x] **PR message**:
This PR adds top_k as a param to the Needle Retriever. By default we use
top 10.
- [X] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
- ** Description**: I have added a new operator in the operator map with
key `$in` and value `IN`, so that you can define filters using lists as
values. This was already contemplated but as IN operator was not in the
map they cannot be used.
- **Issue**: Fixes#29804.
- **Dependencies**: No extra.
This PR adds documentation for the `langchain-discord-shikenso`
integration, including an example notebook at
`docs/docs/integrations/tools/discord.ipynb` and updates to
`libs/packages.yml` to track the new package.
**Issue:**
N/A
**Dependencies:**
None
**Twitter handle:**
N/A
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- [ ] **PR title**: langchain_community: add image support to
DuckDuckGoSearchAPIWrapper
- **Description:** This PR enhances the DuckDuckGoSearchAPIWrapper
within the langchain_community package by introducing support for image
searches. The enhancement includes:
- Adding a new method _ddgs_images to handle image search queries.
- Updating the run and results methods to process and return image
search results appropriately.
- Modifying the source parameter to accept "images" as a valid option,
alongside "text" and "news".
- **Dependencies:** No additional dependencies are required for this
change.
- **Description:** Add the new introduction about checking `store` in
in_memory.py, It’s necessary and useful for beginners.
```python
Check Documents:
.. code-block:: python
for doc in vector_store.store.values():
print(doc)
```
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
**Description:** Fixed and updated Apify integration documentation to
use the new [langchain-apify](https://github.com/apify/langchain-apify)
package.
**Twitter handle:** @apify
- **Description:** Small fix in `add_texts` to make embedding
nullability is checked properly.
- **Issue:** #29765
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
This fix ensures that the chunk size is correctly determined when
processing text embeddings. Previously, the code did not properly handle
cases where chunk_size was None, potentially leading to incorrect
chunking behavior.
Now, chunk_size_ is explicitly set to either the provided chunk_size or
the default self.chunk_size, ensuring consistent chunking. This update
improves reliability when processing large text inputs in batches and
prevents unintended behavior when chunk_size is not specified.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Add the documentation for the community package `langchain-abso`. It
provides a new Chat Model class, that uses https://abso.ai
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Adding Structured Support for ChatPerplexity
- **Issue:** #29357
- This is implemented as per the Perplexity official docs:
https://docs.perplexity.ai/guides/structured-outputs
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
**Description:** Updated init_chat_model to support Granite models
deployed on IBM WatsonX
**Dependencies:**
[langchain-ibm](https://github.com/langchain-ai/langchain-ibm)
Tagging @baskaryan @efriis for review when you get a chance.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
community: langchain_community/vectorstore/oraclevs.py
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Refactored code to allow a connection or a connection
pool.
- **Issue:** Normally an idel connection is terminated by the server
side listener at timeout. A user thus has to re-instantiate the vector
store. The timeout in case of connection is not configurable. The
solution is to use a connection pool where a user can specify a user
defined timeout and the connections are managed by the pool.
- **Dependencies:** None
- **Twitter handle:**
- [ ] **Add tests and docs**: This is not a new integration. A user can
pass either a connection or a connection pool. The determination of what
is passed is made at run time. Everything should work as before.
- [ ] **Lint and test**: Already done.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>