These are set in Github workflows, but forgot to add them to most
makefiles for convenience when developing locally.
`uv run` will automatically sync the lock file. Because many of our
development dependencies are local installs, it will pick up version
changes and update the lock file. Passing `--frozen` or setting this
environment variable disables the behavior.
- **Description:**
This PR addresses an issue with the `stop_sequences` field in the
`ChatGroq` class. Currently, the field is defined as:
```python
stop: Optional[Union[List[str], str]] = Field(None, alias="stop_sequences")
```
This causes the language server (LSP) to raise an error indicating that
the `stop_sequences` parameter must be implemented. The issue occurs
because `Field(None, alias="stop_sequences")` is different compared to
`Field(default=None, alias="stop_sequences")`.

To resolve the issue, the field is updated to:
```python
stop: Optional[Union[List[str], str]] = Field(default=None, alias="stop_sequences")
```
While this issue does not affect runtime behavior, it ensures
compatibility with LSPs and improves the development experience.
- **Issue:** N/A
- **Dependencies:** None
* Removed `ruff check --select I` as `I` is already selected and checked
in the main `ruff check` command
* Added checks for non-empty `PYTHON_FILES`
* Run `ruff check` only on `PYTHON_FILES`
Co-authored-by: Erick Friis <erick@langchain.dev>
Here we allow standard tests to specify a value for `tool_choice` via a
`tool_choice_value` property, which defaults to None.
Chat models [available in
Together](https://docs.together.ai/docs/chat-models) have issues passing
standard tool calling tests:
- llama 3.1 models currently [appear to rely on user-side
parsing](https://docs.together.ai/docs/llama-3-function-calling) in
Together;
- Mixtral-8x7B and Mistral-7B (currently tested) consistently do not
call tools in some tests.
Specifying tool_choice also lets us remove an existing `xfail` and use a
smaller model in Groq tests.
Among integration packages in libs/partners, Groq is an exception in
that it errors on warnings.
Following https://github.com/langchain-ai/langchain/pull/25084, Groq
fails with
> pydantic.warnings.PydanticDeprecatedSince20: The `__fields__`
attribute is deprecated, use `model_fields` instead. Deprecated in
Pydantic V2.0 to be removed in V3.0.
Here we update the behavior to no longer fail on warning, which is
consistent with the rest of the packages in libs/partners.
supports following UX
```python
class SubTool(TypedDict):
"""Subtool docstring"""
args: Annotated[Dict[str, Any], {}, "this does bar"]
class Tool(TypedDict):
"""Docstring
Args:
arg1: foo
"""
arg1: str
arg2: Union[int, str]
arg3: Optional[List[SubTool]]
arg4: Annotated[Literal["bar", "baz"], ..., "this does foo"]
arg5: Annotated[Optional[float], None]
```
- can parse google style docstring
- can use Annotated to specify default value (second arg)
- can use Annotated to specify arg description (third arg)
- can have nested complex types
- Mixtral with Groq has started consistently failing tool calling tests.
Here we restrict testing to llama 3.1.
- `.schema` is deprecated in pydantic proper in favor of
`.model_json_schema`.
resolves https://github.com/langchain-ai/langchain/issues/23911
When an AIMessageChunk is instantiated, we attempt to parse tool calls
off of the tool_call_chunks.
Here we add a special-case to this parsing, where `""` will be parsed as
`{}`.
This is a reaction to how Anthropic streams tool calls in the case where
a function has no arguments:
```
{'id': 'toolu_01J8CgKcuUVrMqfTQWPYh64r', 'input': {}, 'name': 'magic_function', 'type': 'tool_use', 'index': 1}
{'partial_json': '', 'type': 'tool_use', 'index': 1}
```
The `partial_json` does not accumulate to a valid json string-- most
other providers tend to emit `"{}"` in this case.