- **Description:** The ValueError raised on certain structured-outputs
parsing errors, in langchain openai community integration, was missing a
f-string modifier and so didn't produce useful outputs. This is a
2-line, 2-character change.
- **Issue:** None open that this fixes
- **Dependencies:** Nothing changed
- **Twitter handle:** None
- [X] **Add tests and docs**: There's nothing to add for.
- [-] **Lint and test**: Happy to run this if you deem it necessary.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
The tokens I get are:
```
['', '\n\n', 'The', ' sun', ' was', ' setting', ' over', ' the', ' horizon', ',', ' casting', '']
```
so possibly an extra empty token is included in the output.
lmk @efriis if we should look into this further.
## Goal
Solve the following problems with `langchain-openai`:
- Structured output with `o1` [breaks out of the
box](https://langchain.slack.com/archives/C050X0VTN56/p1735232400232099).
- `with_structured_output` by default does not use OpenAI’s [structured
output
feature](https://platform.openai.com/docs/guides/structured-outputs).
- We override API defaults for temperature and other parameters.
## Breaking changes:
- Default method for structured output is changing to OpenAI’s dedicated
[structured output
feature](https://platform.openai.com/docs/guides/structured-outputs).
For schemas specified via TypedDict or JSON schema, strict schema
validation is disabled by default but can be enabled by specifying
`strict=True`.
- To recover previous default, pass `method="function_calling"` into
`with_structured_output`.
- Models that don’t support `method="json_schema"` (e.g., `gpt-4` and
`gpt-3.5-turbo`, currently the default model for ChatOpenAI) will raise
an error unless `method` is explicitly specified.
- To recover previous default, pass `method="function_calling"` into
`with_structured_output`.
- Schemas specified via Pydantic `BaseModel` that have fields with
non-null defaults or metadata (like min/max constraints) will raise an
error.
- To recover previous default, pass `method="function_calling"` into
`with_structured_output`.
- `strict` now defaults to False for `method="json_schema"` when schemas
are specified via TypedDict or JSON schema.
- To recover previous behavior, use `with_structured_output(schema,
strict=True)`
- Schemas specified via Pydantic V1 will raise a warning (and use
`method="function_calling"`) unless `method` is explicitly specified.
- To remove the warning, pass `method="function_calling"` into
`with_structured_output`.
- Streaming with default structured output method / Pydantic schema no
longer generates intermediate streamed chunks.
- To recover previous behavior, pass `method="function_calling"` into
`with_structured_output`.
- We no longer override default temperature (was 0.7 in LangChain, now
will follow OpenAI, currently 1.0).
- To recover previous behavior, initialize `ChatOpenAI` or
`AzureChatOpenAI` with `temperature=0.7`.
- Note: conceptually there is a difference between forcing a tool call
and forcing a response format. Tool calls may have more concise
arguments vs. generating content adhering to a schema. Prompts may need
to be adjusted to recover desired behavior.
---------
Co-authored-by: Jacob Lee <jacoblee93@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Convert developer openai messages to SystemMessage
- store additional_kwargs={"__openai_role__": "developer"} so that the
correct role can be reconstructed if needed
- update ChatOpenAI to read in openai_role
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
From what I can tell response using SDK is not deterministic:
```python
import numpy as np
import openai
documents = ["disallowed special token '<|endoftext|>'"]
model = "text-embedding-ada-002"
direct_output_1 = (
openai.OpenAI()
.embeddings.create(input=documents, model=model)
.data[0]
.embedding
)
for i in range(10):
direct_output_2 = (
openai.OpenAI()
.embeddings.create(input=documents, model=model)
.data[0]
.embedding
)
print(f"{i}: {np.isclose(direct_output_1, direct_output_2).all()}")
```
```
0: True
1: True
2: True
3: True
4: False
5: True
6: True
7: True
8: True
9: True
```
See related discussion here:
https://community.openai.com/t/can-text-embedding-ada-002-be-made-deterministic/318054
Found the same result using `"text-embedding-3-small"`.
Last week Anthropic released version 0.39.0 of its python sdk, which
enabled support for Python 3.13. This release deleted a legacy
`client.count_tokens` method, which we currently access during init of
the `Anthropic` LLM. Anthropic has replaced this functionality with the
[client.beta.messages.count_tokens()
API](https://github.com/anthropics/anthropic-sdk-python/pull/726).
To enable support for `anthropic >= 0.39.0` and Python 3.13, here we
drop support for the legacy token counting method, and add support for
the new method via `ChatAnthropic.get_num_tokens_from_messages`.
To fully support the token counting API, we update the signature of
`get_num_tokens_from_message` to accept tools everywhere.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:** Fixes None addition issues when an empty value is
passed on
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
This PR introduces a new `azure_ad_async_token_provider` attribute to
the `AzureOpenAI` and `AzureChatOpenAI` classes in `partners/openai` and
`community` packages, given it's currently supported on `openai` package
as
[AsyncAzureADTokenProvider](https://github.com/openai/openai-python/blob/main/src/openai/lib/azure.py#L33)
type.
The reason for creating a new attribute is to avoid breaking changes.
Let's say you have an existing code that uses a `AzureOpenAI` or
`AzureChatOpenAI` instance to perform both sync and async operations.
The `azure_ad_token_provider` will work exactly as it is today, while
`azure_ad_async_token_provider` will override it for async requests.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.