- **Description:** `embed_documents` and `embed_query` was throwing off
the error as stated in the issue. The issue was that `Llama` client is
returning the embeddings in a nested list which is not being accounted
for in the current implementation and therefore the stated error is
being raised.
- **Issue:** #28813
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** The aload function, contrary to its name, is not an
asynchronous function, so it cannot work concurrently with other
asynchronous functions.
- **Issue:** #28336
- **Test: **: Done
- **Docs: **
[here](e0a95e5646/docs/docs/integrations/document_loaders/web_base.ipynb (L201))
- **Lint: ** All checks passed
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- *[x] **PR title**: "community: adding langchain-predictionguard
partner package documentation"
- *[x] **PR message**:
- **Description:** This PR adds documentation for the
langchain-predictionguard package to main langchain repo, along with
deprecating current Prediction Guard LLMs package. The LLMs package was
previously broken, so I also updated it one final time to allow it to
continue working from this point onward. . This enables users to chat
with LLMs through the Prediction Guard ecosystem.
- **Package Links**:
- [PyPI](https://pypi.org/project/langchain-predictionguard/)
- [Github
Repo](https://www.github.com/predictionguard/langchain-predictionguard)
- **Issue:** None
- **Dependencies:** None
- **Twitter handle:** [@predictionguard](https://x.com/predictionguard)
- *[x] **Add tests and docs**: All docs have been added for the partner
package, and the current LLMs package test was updated to reflect
changes.
- *[x] **Lint and test**: Linting tests are all passing.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
## Description
(This PR has contributions from @khushiDesai, @ashvini8, and
@ssumaiyaahmed).
This PR addresses **Issue #11229** which addresses the need for SQL
support in document parsing. This is integrated into the generic
TreeSitter parsing library, allowing LangChain users to easily load
codebases in SQL into smaller, manageable "documents."
This pull request adds a new ```SQLSegmenter``` class, which provides
the SQL integration.
## Issue
**Issue #11229**: Add support for a variety of languages to
LanguageParser
## Testing
We created a file ```test_sql.py``` with several tests to ensure the
```SQLSegmenter``` is functional. Below are the tests we added:
- ```def test_is_valid```: Checks SQL validity.
- ```def test_extract_functions_classes```: Extracts individual SQL
statements.
- ```def test_simplify_code```: Simplifies SQL code with comments.
---------
Co-authored-by: Syeda Sumaiya Ahmed <114104419+ssumaiyaahmed@users.noreply.github.com>
Co-authored-by: ashvini hunagund <97271381+ashvini8@users.noreply.github.com>
Co-authored-by: Khushi Desai <khushi.desai@advantawitty.com>
Co-authored-by: Khushi Desai <59741309+khushiDesai@users.noreply.github.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- "community: 1. add new parameter `default_headers` for oci model
deployments and oci chat model deployments. 2. updated k parameter in
OCIModelDeploymentLLM class."
- [x] **PR message**:
- **Description:** 1. add new parameters `default_headers` for oci model
deployments and oci chat model deployments. 2. updated k parameter in
OCIModelDeploymentLLM class.
- [x] **Add tests and docs**:
1. unit tests
2. notebook
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- [ x ] Fix when lancedb return table without metadata column
- **Description:** Check the table schema, if not has metadata column,
init the Document with metadata argument equal to empty dict
- **Issue:** https://github.com/langchain-ai/langchain/issues/27005
- [ x ] **Add tests and docs**
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
**Description**: Some confluence instances don't support personal access
token, then cookie is a convenient way to authenticate. This PR adds
support for Confluence cookies.
**Twitter handle**: soulmachine
**Description:**
- Add _concatenate_rich_text method to combine all elements in rich text
arrays
- Update load_page method to use _concatenate_rich_text for rich text
properties
- Ensure all text content is captured, including inline code and
formatted text
- Add unit tests to verify correct handling of multi-element rich text
This fix prevents truncation of content after backticks or other
formatting elements.
**Issue:**
Using Notion DB Loader, the text for `richtext` and `title` is truncated
after 1st element was loaded as Notion Loader only read the first
element.
**Dependencies:** any dependencies required for this change
None.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:** Added support for FalkorDB Vector Store, including its
implementation, unit tests, documentation, and an example notebook. The
FalkorDB integration allows users to efficiently manage and query
embeddings in a vector database, with relevance scoring and maximal
marginal relevance search. The following components were implemented:
- Core implementation for FalkorDBVector store.
- Unit tests ensuring proper functionality and edge case coverage.
- Example notebook demonstrating an end-to-end setup, search, and
retrieval using FalkorDB.
**Twitter handle:** @tariyekorogha
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Update to OpenLLM 0.6, which we decides to make use of OpenLLM's
OpenAI-compatible endpoint. Thus, OpenLLM will now just become a thin
wrapper around OpenAI wrapper.
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
---------
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Co-authored-by: ccurme <chester.curme@gmail.com>
## description
- I refactor `Chathunyuan` using tencentcloud sdk because I found the
original one can't work in my application
- I add `HunyuanEmbeddings` using tencentcloud sdk
- Both of them are extend the basic class of langchain. I have fully
tested them in my application
## Dependencies
- tencentcloud-sdk-python
---------
Co-authored-by: centonhuang <centonhuang@tencent.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [ ] **PR title**: community: Add configurable `VisualFeatures` to the
`AzureAiServicesImageAnalysisTool`
- [ ] **PR message**:
- **Description:** The `AzureAiServicesImageAnalysisTool` is a good
service and utilises the Azure AI Vision package under the hood.
However, since the creation of this tool, new `VisualFeatures` have been
added to allow the user to request other image specific information to
be returned. Currently, the tool offers neither configuration of which
features should be return nor does it offer any newer feature types. The
aim of this PR is to address this and expose more of the Azure Service
in this integration.
- **Dependencies:** no new dependencies in the main class file,
azure.ai.vision.imageanalysis added to extra test dependencies file.
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. Although no tests exist for already implemented Azure Service tools,
I've created 3 unit tests for this class that test initialisation and
credentials, local file analysis and a test for the new changes/
features option.
- [ ] **Lint and test**: All linting has passed.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Description:
Current AGEGraph() implementation does some custom wrapping for graph
queries. The method here is _wrap_query() as it parse the field from the
original query to add some SQL context to it.
This improves the current parsing logic to cover additional edge cases
that are added to the test coverage, basically if any Node property name
or value has the "return" literal in it will break the graph / SQL
query.
We discovered this while dealing with real world datasets, is not an
uncommon scenario and I think it needs to be covered.
**Description:**
The current implementation of `DynamoDBChatMessageHistory` updates the
`History` attribute for a given chat history record by first extracting
the existing contents into memory, appending the new message, and then
using the `put_item` method to put the record back. This has the effect
of overwriting any additional attributes someone may want to include in
the record, like chat session metadata.
This PR suggests changing from using `put_item` to using `update_item`
instead which will keep any other attributes in the record untouched.
The change is backward compatible since
1. `update_item` is an "upsert" operation, creating the record if it
doesn't already exist, otherwise updating it
2. It only touches the db insert call and passes the exact same
information. The rest of the class is left untouched
**Dependencies:**
None
**Tests and docs:**
No unit tests currently exist for the `DynamoDBChatMessageHistory`
class. This PR adds the file
`libs/community/tests/unit_tests/chat_message_histories/test_dynamodb_chat_message_history.py`
to test the `add_message` and `clear` methods. I wanted to use the moto
library to mock DynamoDB calls but I could not get poetry to resolve it
so I mocked those calls myself in the test. Therefore, no test
dependencies were added.
The change was tested on a test DynamoDB table as well. The first three
images below show the current behavior. First a message is added to chat
history, then a value is inserted in the record in some other attribute,
and finally another message is added to the record, destroying the other
attribute.



The next three images show the new behavior. Once again a value is added
to an attribute other than the History attribute, but now when the
followup message is added it does not destroy that other attribute. The
History attribute itself is unaffected by this change.



The doc located at `docs/docs/integrations/memory/aws_dynamodb.ipynb`
required no changes and was tested as well.
The `FewShotSQLTool` gets some SQL query examples from a
`BaseExampleSelector` for a given question.
This is useful to provide [few-shot
examples](https://python.langchain.com/docs/how_to/sql_prompting/#few-shot-examples)
capability to an SQL agent.
Example usage:
```python
from langchain.agents.agent_toolkits.sql.prompt import SQL_PREFIX
embeddings = OpenAIEmbeddings()
example_selector = SemanticSimilarityExampleSelector.from_examples(
examples,
embeddings,
AstraDB,
k=5,
input_keys=["input"],
collection_name="lc_few_shots",
token=ASTRA_DB_APPLICATION_TOKEN,
api_endpoint=ASTRA_DB_API_ENDPOINT,
)
few_shot_sql_tool = FewShotSQLTool(
example_selector=example_selector,
description="Input to this tool is the input question, output is a few SQL query examples related to the input question. Always use this tool before checking the query with sql_db_query_checker!"
)
agent = create_sql_agent(
llm=llm,
db=db,
prefix=SQL_PREFIX + "\nYou MUST get some example queries before creating the query.",
extra_tools=[few_shot_sql_tool]
)
result = agent.invoke({"input": "How many artists are there?"})
```
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- Added [full
text](https://learn.microsoft.com/en-us/azure/cosmos-db/gen-ai/full-text-search)
and [hybrid
search](https://learn.microsoft.com/en-us/azure/cosmos-db/gen-ai/hybrid-search)
support for Azure CosmosDB NoSql Vector Store
- Added a new enum called CosmosDBQueryType which supports the following
values:
- VECTOR = "vector"
- FULL_TEXT_SEARCH = "full_text_search"
- FULL_TEXT_RANK = "full_text_rank"
- HYBRID = "hybrid"
- User now needs to provide this query_type to the similarity_search
method for the vectorStore to make the correct query api call.
- Added a couple of work arounds as for the FULL_TEXT_RANK and HYBRID
query functions we don't support parameterized queries right now. I have
added TODO's in place, and will remove these work arounds by end of
January.
- Added necessary test cases and updated the
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Erick Friis <erickfriis@gmail.com>
- **Description:** Adds a helper that renders documents with the
GraphVectorStore metadata fields to Graphviz for visualization. This is
helpful for understanding and debugging.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
# Description
Implements the `atransform_documents` method for
`MarkdownifyTransformer` using the `asyncio` built-in library for
concurrency.
Note that this is mainly for API completeness when working with async
frameworks rather than for performance, since the `markdownify` function
is not I/O bound because it works with `Document` objects already in
memory.
# Issue
Fixes#27865
# Dependencies
No new dependencies added, but
[`markdownify`](https://github.com/matthewwithanm/python-markdownify) is
required since this PR updates the `markdownify` integration.
# Tests and docs
- Tests added
- I did not modify the docstrings since they already described the basic
functionality, and [the API docs also already included a
description](https://python.langchain.com/api_reference/community/document_transformers/langchain_community.document_transformers.markdownify.MarkdownifyTransformer.html#langchain_community.document_transformers.markdownify.MarkdownifyTransformer.atransform_documents).
If it would be helpful, I would be happy to update the docstrings and/or
the API docs.
# Lint and test
- [x] format
- [x] lint
- [x] test
I ran formatting with `make format`, linting with `make lint`, and
confirmed that tests pass using `make test`. Note that some unit tests
pass in CI but may fail when running `make_test`. Those unit tests are:
- `test_extract_html` (and `test_extract_html_async`)
- `test_strip_tags` (and `test_strip_tags_async`)
- `test_convert_tags` (and `test_convert_tags_async`)
The reason for the difference is that there are trailing spaces when the
tests are run in the CI checks, and no trailing spaces when run with
`make test`. I ensured that the tests pass in CI, but they may fail with
`make test` due to the addition of trailing spaces.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
community: add hybrid search in opensearch
# Langchain OpenSearch Hybrid Search Implementation
## Implementation of Hybrid Search:
I have taken LangChain's OpenSearch integration to the next level by
adding hybrid search capabilities. Building on the existing
OpenSearchVectorSearch class, I have implemented Hybrid Search
functionality (which combines the best of both keyword and semantic
search). This new functionality allows users to harness the power of
OpenSearch's advanced hybrid search features without leaving the
familiar LangChain ecosystem. By blending traditional text matching with
vector-based similarity, the enhanced class delivers more accurate and
contextually relevant results. It's designed to seamlessly fit into
existing LangChain workflows, making it easy for developers to upgrade
their search capabilities.
In implementing the hybrid search for OpenSearch within the LangChain
framework, I also incorporated filtering capabilities. It's important to
note that according to the OpenSearch hybrid search documentation, only
post-filtering is supported for hybrid queries. This means that the
filtering is applied after the hybrid search results are obtained,
rather than during the initial search process.
**Note:** For the implementation of hybrid search, I strictly followed
the official OpenSearch Hybrid search documentation and I took
inspiration from
https://github.com/AndreasThinks/langchain/tree/feature/opensearch_hybrid_search
Thanks Mate!
### Experiments
I conducted few experiments to verify that the hybrid search
implementation is accurate and capable of reproducing the results of
both plain keyword search and vector search.
Experiment - 1
Hybrid Search
Keyword_weight: 1, vector_weight: 0
I conducted an experiment to verify the accuracy of my hybrid search
implementation by comparing it to a plain keyword search. For this test,
I set the keyword_weight to 1 and the vector_weight to 0 in the hybrid
search, effectively giving full weightage to the keyword component. The
results from this hybrid search configuration matched those of a plain
keyword search, confirming that my implementation can accurately
reproduce keyword-only search results when needed. It's important to
note that while the results were the same, the scores differed between
the two methods. This difference is expected because the plain keyword
search in OpenSearch uses the BM25 algorithm for scoring, whereas the
hybrid search still performs both keyword and vector searches before
normalizing the scores, even when the vector component is given zero
weight. This experiment validates that my hybrid search solution
correctly handles the keyword search component and properly applies the
weighting system, demonstrating its accuracy and flexibility in
emulating different search scenarios.
Experiment - 2
Hybrid Search
keyword_weight = 0.0, vector_weight = 1.0
For experiment-2, I took the inverse approach to further validate my
hybrid search implementation. I set the keyword_weight to 0 and the
vector_weight to 1, effectively giving full weightage to the vector
search component (KNN search). I then compared these results with a pure
vector search. The outcome was consistent with my expectations: the
results from the hybrid search with these settings exactly matched those
from a standalone vector search. This confirms that my implementation
accurately reproduces vector search results when configured to do so. As
with the first experiment, I observed that while the results were
identical, the scores differed between the two methods. This difference
in scoring is expected and can be attributed to the normalization
process in hybrid search, which still considers both components even
when one is given zero weight. This experiment further validates the
accuracy and flexibility of my hybrid search solution, demonstrating its
ability to effectively emulate pure vector search when needed while
maintaining the underlying hybrid search structure.
Experiment - 3
Hybrid Search - balanced
keyword_weight = 0.5, vector_weight = 0.5
For experiment-3, I adopted a balanced approach to further evaluate the
effectiveness of my hybrid search implementation. In this test, I set
both the keyword_weight and vector_weight to 0.5, giving equal
importance to keyword-based and vector-based search components. This
configuration aims to leverage the strengths of both search methods
simultaneously. By setting both weights to 0.5, I intended to create a
scenario where the hybrid search would consider lexical matches and
semantic similarity equally. This balanced approach is often ideal for
many real-world applications, as it can capture both exact keyword
matches and contextually relevant results that might not contain the
exact search terms.
Kindly verify the notebook for the experiments conducted!
**Notebook:**
https://github.com/karthikbharadhwajKB/Langchain_OpenSearch_Hybrid_search/blob/main/Opensearch_Hybridsearch.ipynb
### Instructions to follow for Performing Hybrid Search:
**Step-1: Instantiating OpenSearchVectorSearch Class:**
```python
opensearch_vectorstore = OpenSearchVectorSearch(
index_name=os.getenv("INDEX_NAME"),
embedding_function=embedding_model,
opensearch_url=os.getenv("OPENSEARCH_URL"),
http_auth=(os.getenv("OPENSEARCH_USERNAME"),os.getenv("OPENSEARCH_PASSWORD")),
use_ssl=False,
verify_certs=False,
ssl_assert_hostname=False,
ssl_show_warn=False
)
```
**Parameters:**
1. **index_name:** The name of the OpenSearch index to use.
2. **embedding_function:** The function or model used to generate
embeddings for the documents. It's assumed that embedding_model is
defined elsewhere in the code.
3. **opensearch_url:** The URL of the OpenSearch instance.
4. **http_auth:** A tuple containing the username and password for
authentication.
5. **use_ssl:** Set to False, indicating that the connection to
OpenSearch is not using SSL/TLS encryption.
6. **verify_certs:** Set to False, which means the SSL certificates are
not being verified. This is often used in development environments but
is not recommended for production.
7. **ssl_assert_hostname:** Set to False, disabling hostname
verification in SSL certificates.
8. **ssl_show_warn:** Set to False, suppressing SSL-related warnings.
**Step-2: Configure Search Pipeline:**
To initiate hybrid search functionality, you need to configures a search
pipeline first.
**Implementation Details:**
This method configures a search pipeline in OpenSearch that:
1. Normalizes the scores from both keyword and vector searches using the
min-max technique.
2. Applies the specified weights to the normalized scores.
3. Calculates the final score using an arithmetic mean of the weighted,
normalized scores.
**Parameters:**
* **pipeline_name (str):** A unique identifier for the search pipeline.
It's recommended to use a descriptive name that indicates the weights
used for keyword and vector searches.
* **keyword_weight (float):** The weight assigned to the keyword search
component. This should be a float value between 0 and 1. In this
example, 0.3 gives 30% importance to traditional text matching.
* **vector_weight (float):** The weight assigned to the vector search
component. This should be a float value between 0 and 1. In this
example, 0.7 gives 70% importance to semantic similarity.
```python
opensearch_vectorstore.configure_search_pipelines(
pipeline_name="search_pipeline_keyword_0.3_vector_0.7",
keyword_weight=0.3,
vector_weight=0.7,
)
```
**Step-3: Performing Hybrid Search:**
After creating the search pipeline, you can perform a hybrid search
using the `similarity_search()` method (or) any methods that are
supported by `langchain`. This method combines both `keyword-based and
semantic similarity` searches on your OpenSearch index, leveraging the
strengths of both traditional information retrieval and vector embedding
techniques.
**parameters:**
* **query:** The search query string.
* **k:** The number of top results to return (in this case, 3).
* **search_type:** Set to `hybrid_search` to use both keyword and vector
search capabilities.
* **search_pipeline:** The name of the previously created search
pipeline.
```python
query = "what are the country named in our database?"
top_k = 3
pipeline_name = "search_pipeline_keyword_0.3_vector_0.7"
matched_docs = opensearch_vectorstore.similarity_search_with_score(
query=query,
k=top_k,
search_type="hybrid_search",
search_pipeline = pipeline_name
)
matched_docs
```
twitter handle: @iamkarthik98
---------
Co-authored-by: Karthik Kolluri <karthik.kolluri@eidosmedia.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
JSONparse, in _validate_metadata_func(), checks the consistency of the
_metadata_func() function. To do this, it invokes it and makes sure it
receives a dictionary in response. However, during the call, it does not
respect future calls, as shown on line 100. This generates errors if,
for example, the function is like this:
```python
def generate_metadata(json_node:Dict[str,Any],kwargs:Dict[str,Any]) -> Dict[str,Any]:
return {
"source": url,
"row": kwargs['seq_num'],
"question":json_node.get("question"),
}
loader = JSONLoader(
file_path=file_path,
content_key="answer",
jq_schema='.[]',
metadata_func=generate_metadata,
text_content=False)
```
To avoid this, the verification must comply with the specifications.
This patch does just that.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: community: add TablestoreVectorStore
- [x] **PR message**:
- **Description:** add TablestoreVectorStore
- **Dependencies:** none
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration: yes
2. an example notebook showing its use: yes
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR fixes JSONLoader._get_text not converting objects to json string
correctly.
If an object is serializable and is not a dict, JSONLoader will use
python built-in str() method to convert it to string. This may cause
object converted to strings not following json standard. For example, a
list will be converted to string with single quotes, and if json.loads
try to load this string, it will cause error.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** The current version of the `delete` method assumes
that the id field will always be called `id`.
- **Issue:** n/a
- **Dependencies:** n/a
- **Twitter handle:** ugh, Twitter :D
---
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
- **Memgraph** no longer relies on `Neo4jGraphStore` but **implements
`GraphStore`**, just like other graph databases.
- **Memgraph** no longer relies on `GraphQAChain`, but implements
`MemgraphQAChain`, just like other graph databases.
- The refresh schema procedure has been updated to try using `SHOW
SCHEMA INFO`. The fallback uses Cypher queries (a combination of schema
and Cypher) → **LangChain integration no longer relies on MAGE
library**.
- The **schema structure** has been reformatted. Regardless of the
procedures used to get schema, schema structure is the same.
- The `add_graph_documents()` method has been implemented. It transforms
`GraphDocument` into Cypher queries and creates a graph in Memgraph. It
implements the ability to use `baseEntityLabel` to improve speed
(`baseEntityLabel` has an index on the `id` property). It also
implements the ability to include sources by creating a `MENTIONS`
relationship to the source document.
- Jupyter Notebook for Memgraph has been updated.
- **Issue:** /
- **Dependencies:** /
- **Twitter handle:** supe_katarina (DX Engineer @ Memgraph)
Closes#25606
## **Description:**
Enable `ConfluenceLoader` to include labels with `include_labels` option
(`false` by default for backward compatibility). and the labels are set
to `metadata` in the `Document`. e.g. `{"labels": ["l1", "l2"]}`
## Notes
Confluence API supports to get labels by providing `metadata.labels` to
`expand` query parameter
All of the following functions support `expand` in the same way:
- confluence.get_page_by_id
- confluence.get_all_pages_by_label
- confluence.get_all_pages_from_space
- cql (internally using
[/api/content/search](https://developer.atlassian.com/cloud/confluence/rest/v1/api-group-content/#api-wiki-rest-api-content-search-get))
## **Issue:**
No issue related to this PR.
## **Dependencies:**
No changes.
## **Twitter handle:**
[@gymnstcs](https://x.com/gymnstcs)
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Issue:** Added support for creating indexes in the SAP HANA Vector
engine.
**Changes**:
1. Introduced a new function `create_hnsw_index` in `hanavector.py` that
enables the creation of indexes for SAP HANA Vector.
2. Added integration tests for the index creation function to ensure
functionality.
3. Updated the documentation to reflect the new index creation feature,
including examples and output from the notebook.
4. Fix the operator issue in ` _process_filter_object` function and
change the array argument to a placeholder in the similarity search SQL
statement.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Updated the kwargs for the structured query from
filters to filter due to deprecation of 'filters' for Databricks Vector
Search. Also changed the error messages as the allowed operators and
comparators are different which can cause issues with functions such as
get_query_constructor_prompt()
- **Issue:** Fixes the Key Error for filters due to deprecation in favor
for 'filter':
LangChainDeprecationWarning: DatabricksVectorSearch received a key
`filters` in search_kwargs. `filters` was deprecated since
langchain-community 0.2.11 and will be removed in 0.3. Please use
`filter` instead.
- **Dependencies:** N/A
- **Twitter handle:** N/A
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- [x] **PR title**: "community: add Needle retriever and document loader
integration"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** This PR adds a new integration for Needle, which
includes:
- **NeedleRetriever**: A retriever for fetching documents from Needle
collections.
- **NeedleLoader**: A document loader for managing and loading documents
into Needle collections.
- Example notebooks demonstrating usage have been added in:
- `docs/docs/integrations/retrievers/needle.ipynb`
- `docs/docs/integrations/document_loaders/needle.ipynb`.
- **Dependencies:** The `needle-python` package is required as an
external dependency for accessing Needle's API. It has been added to the
extended testing dependencies list.
- **Twitter handle:** Feel free to mention me if this PR gets announced:
[needlexai](https://x.com/NeedlexAI).
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. Unit tests have been added for both `NeedleRetriever` and
`NeedleLoader` in `libs/community/tests/unit_tests`. These tests mock
API calls to avoid relying on network access.
2. Example notebooks have been added to `docs/docs/integrations/`,
showcasing both retriever and loader functionality.
- [x] **Lint and test**: Run `make format`, `make lint`, and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
- `make format`: Passed
- `make lint`: Passed
- `make test`: Passed (requires `needle-python` to be installed locally;
this package is not added to LangChain dependencies).
Additional guidelines:
- [x] Optional dependencies are imported only within functions.
- [x] No dependencies have been added to pyproject.toml files except for
those required for unit tests.
- [x] The PR does not touch more than one package.
- [x] Changes are fully backwards compatible.
- [x] Community additions are not re-imported into LangChain core.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:** When an OpenAI assistant is invoked, it creates a run
by default, allowing users to set only a few request fields. The
truncation strategy is set to auto, which includes previous messages in
the thread along with the current question until the context length is
reached. This causes token usage to grow incrementally:
consumed_tokens = previous_consumed_tokens + current_consumed_tokens.
This PR adds support for user-defined truncation strategies, giving
better control over token consumption.
**Issue:** High token consumption.
In collaboration with @rlouf I build an
[outlines](https://dottxt-ai.github.io/outlines/latest/) integration for
langchain!
I think this is really useful for doing any type of structured output
locally.
[Dottxt](https://dottxt.co) spend alot of work optimising this process
at a lower level
([outlines-core](https://pypi.org/project/outlines-core/0.1.14/) written
in rust) so I think this is a better alternative over all current
approaches in langchain to do structured output.
It also implements the `.with_structured_output` method so it should be
a drop in replacement for a lot of applications.
The integration includes:
- **Outlines LLM class**
- **ChatOutlines class**
- **Tutorial Cookbooks**
- **Documentation Page**
- **Validation and error messages**
- **Exposes Outlines Structured output features**
- **Support for multiple backends**
- **Integration and Unit Tests**
Dependencies: `outlines` + additional (depending on backend used)
I am not sure if the unit-tests comply with all requirements, if not I
suggest to just remove them since I don't see a useful way to do it
differently.
### Quick overview:
Chat Models:
<img width="698" alt="image"
src="https://github.com/user-attachments/assets/05a499b9-858c-4397-a9ff-165c2b3e7acc">
Structured Output:
<img width="955" alt="image"
src="https://github.com/user-attachments/assets/b9fcac11-d3e5-4698-b1ae-8c4cb3d54c45">
---------
Co-authored-by: Vadym Barda <vadym@langchain.dev>