In the function _load_run_evaluators the function _get_keys was not
called if only custom_evaluators parameter is used
- Description: In the function _load_run_evaluators the function
_get_keys was not called if only custom_evaluators parameter is used,
- Issue: no issue created for this yet,
- Dependencies: None,
- Tag maintainer: @vowelparrot,
- Twitter handle: Buckler89
---------
Co-authored-by: ddroghini <d.droghini@mflgroup.com>
Description: This commit uses the new Service object in Selenium
webdriver as executable_path has been [deprecated and removed in
selenium version
4.11.2](9f5801c82f)
Issue: https://github.com/langchain-ai/langchain/issues/9808
Tag Maintainer: @eyurtsev
- Description: In my previous PR, I had modified the code to catch all
kinds of [SOURCES, sources, Source, Sources]. However, this change
included checking for a colon or a white space which should actually
have been only checking for a colon.
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
Adds support for [llmonitor](https://llmonitor.com) callbacks.
It enables:
- Requests tracking / logging / analytics
- Error debugging
- Cost analytics
- User tracking
Let me know if anythings neds to be changed for merge.
Thank you!
- Description: the implementation for similarity_search_with_score did
not actually include a score or logic to filter. Now fixed.
- Tag maintainer: @rlancemartin
- Twitter handle: @ofermend
Recently we made the decision that PromptGuard takes a list of strings
instead of a string.
@ggroode implemented the integration change.
---------
Co-authored-by: ggroode <ggroode@berkeley.edu>
Co-authored-by: ggroode <46691276+ggroode@users.noreply.github.com>
- Description: added the _cosine_relevance_score_fn to
_select_relevance_score_fn of faiss.py to enable the use of cosine
distance for similarity for this vector store and to comply with the
Error Message, that implies, that cosine should be a valid distance
strategy
- Issue: no relevant Issue found, but needed this function myself and
tested it in a private repo
- Dependencies: none
Neo4j has added vector index integration just recently. To allow both
ingestion and integrating it as vector RAG applications, I wrapped it as
a vector store as the implementation is completely different from
`GraphCypherQAChain`. Here, we are not generating any Cypher statements
at query time, we are simply doing the vector similarity search using
the new vector index as if we were dealing with a vector database.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Mypy was not able to determine a good type for `type_to_loader_dict`,
since the values in the dict are functions whose return types are
related to each other in a complex way. One can see this by adding a
line like `reveal_type(type_to_loader_dict)` and running mypy, which
will get mypy to show what type it has inferred for that value.
Adding an explicit type hint to help out mypy avoids the need for a mypy
suppression and allows the code to type-check cleanly.
We always overwrote the required args but we infer them by default.
Doing it only the old way makes it so the llm guesses even if an arg is
optional (e.g., for uuids)