Title: langchain-pinecone: improve test structure and async handling
Description: This PR improves the test infrastructure for the
langchain-pinecone package by:
1. Implementing LangChain's standard test patterns for embeddings
2. Adding comprehensive configuration testing
3. Improving async test coverage
4. Fixing integration test issues with namespaces and async markers
The changes make the tests more robust, maintainable, and aligned with
LangChain's testing standards while ensuring proper async behavior in
the embeddings implementation.
Key improvements:
- Added standard EmbeddingsTests implementation
- Split custom configuration tests into a separate test class
- Added proper async test coverage with pytest-asyncio
- Fixed namespace handling in vector store integration tests
- Improved test organization and documentation
Dependencies: None (uses existing test dependencies)
Tests and Documentation:
- ✅ Added standard test implementation following LangChain's patterns
- ✅ Added comprehensive unit tests for configuration and async behavior
- ✅ All tests passing locally
- No documentation changes needed (internal test improvements only)
Twitter handle: N/A
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Refactoring PDF loaders step 1**: "community: Refactoring PDF
loaders to standardize approaches"
- **Description:** Declare CloudBlobLoader in __init__.py. file_path is
Union[str, PurePath] anywhere
- **Twitter handle:** pprados
This is one part of a larger Pull Request (PR) that is too large to be
submitted all at once.
This specific part focuses to prepare the update of all parsers.
For more details, see [PR
28970](https://github.com/langchain-ai/langchain/pull/28970).
@eyurtsev it's the start of a PR series.
Fixes#29010
This PR updates the example for FewShotChatMessagePromptTemplate by
modifying the human input prompt to include a more descriptive and
user-friendly question format ('What is {input}?') instead of just
'{input}'. This change enhances clarity and usability in the
documentation example.
Co-authored-by: Erick Friis <erick@langchain.dev>
- [x] **PR title**: "docs: add langchain-pull-md Markdown loader"
- [x] **PR message**:
- **Description:** This PR introduces the `langchain-pull-md` package to
the LangChain community. It includes a new document loader that utilizes
the pull.md service to convert URLs into Markdown format, particularly
useful for handling web pages rendered with JavaScript frameworks like
React, Angular, or Vue.js. This loader helps in efficient and reliable
Markdown conversion directly from URLs without local rendering, reducing
server load.
- **Issue:** NA
- **Dependencies:** requests >=2.25.1
- **Twitter handle:** https://x.com/eugeneevstafev?s=21
- [x] **Add tests and docs**:
1. Added unit tests to verify URL checking and conversion
functionalities.
2. Created a comprehensive example notebook detailing the usage of the
new loader.
- [x] **Lint and test**:
- Completed local testing using `make format`, `make lint`, and `make
test` commands as per the LangChain contribution guidelines.
**Related Links:**
- [Package Repository](https://github.com/chigwell/langchain-pull-md)
- [PyPI Package](https://pypi.org/project/langchain-pull-md/)
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Add option to return content and artifacts, to also be able to access
the full info of the retrieved documents.
They are returned as a list of dicts in the `artifacts` property if
parameter `response_format` is set to `"content_and_artifact"`.
Defaults to `"content"` to keep current behavior.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
(Inspired by https://github.com/langchain-ai/langchain/issues/26918)
We rely on some deprecated public functions in the hot path for tool
binding (`convert_pydantic_to_openai_function`,
`convert_python_function_to_openai_function`, and
`format_tool_to_openai_function`). My understanding is that what is
deprecated is not the functionality they implement, but use of them in
the public API -- we expect to continue to rely on them.
Here we update these functions to be private and not deprecated. We keep
the public, deprecated functions as simple wrappers that can be safely
deleted.
The `@deprecated` wrapper adds considerable latency due to its use of
the `inspect` module. This update speeds up `bind_tools` by a factor of
~100x:
Before:

After:

---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [x] **PR title**: "docs: fix typo"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a minor fix of typo
- **Issue:** NA
- **Dependencies:** NA
- **Twitter handle:** NA
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. ~~a test for the integration, preferably unit tests that do not rely
on network access,~~
2. ~~an example notebook showing its use. It lives in
`docs/docs/integrations` directory.~~
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Add a retriever to interact with Dappier APIs with an example notebook.
The retriever can be invoked with:
```python
from langchain_dappier import DappierRetriever
retriever = DappierRetriever(
data_model_id="dm_01jagy9nqaeer9hxx8z1sk1jx6",
k=5
)
retriever.invoke("latest tech news")
```
To retrieve 5 documents related to latest news in the tech sector. The
included notebook also includes deeper details about controlling filters
such as selecting a data model, number of documents to return, site
domain reference, minimum articles from the reference domain, and search
algorithm, as well as including the retriever in a chain.
The integration package can be found over here -
https://github.com/DappierAI/langchain-dappier
This commit updates the documentation and package registry for the
FalkorDB Chat Message History integration.
**Changes:**
- Added a comprehensive example notebook
falkordb_chat_message_history.ipynb demonstrating how to use FalkorDB
for session-based chat message storage.
- Added a provider notebook for FalkorDB
- Updated libs/packages.yml to register FalkorDB as an integration
package, following LangChain's new guidelines for community
integrations.
**Notes:**
- This update aligns with LangChain's process for registering new
integrations via documentation updates and package registry
modifications.
- No functional or core package changes were made in this commit.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- In this PR, I have updated the AzureML Endpoint with the latest
endpoint.
- **Description:** I have changed the existing `/chat/completions` to
`/models/chat/completions` in
libs/community/langchain_community/llms/azureml_endpoint.py
- **Issue:** #25702
---------
Co-authored-by: = <=>
**Description:**
This PR updates the codebase to reflect the deprecation of the AgentType
feature. It includes the following changes:
Documentation Update:
Added a deprecation notice to the AgentType class comment.
Provided a reference to the official LangChain migration guide for
transitioning to LangGraph agents.
Reference Link: https://python.langchain.com/docs/how_to/migrate_agent/
**Twitter handle:** @hrrrriiiishhhhh
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
## Description
To integrate ModelScope inference API endpoints for both Embeddings,
LLMs and ChatModels, install the package
`langchain-modelscope-integration` (as discussed in issue #28928 ). This
is necessary because the package name `langchain-modelscope` was already
registered by another party.
ModelScope is a premier platform designed to connect model checkpoints
with model applications. It provides the necessary infrastructure to
share open models and promote model-centric development. For more
information, visit GitHub page:
[ModelScope](https://github.com/modelscope).
- **Description:**
This PR addresses an issue with the `stop_sequences` field in the
`ChatGroq` class. Currently, the field is defined as:
```python
stop: Optional[Union[List[str], str]] = Field(None, alias="stop_sequences")
```
This causes the language server (LSP) to raise an error indicating that
the `stop_sequences` parameter must be implemented. The issue occurs
because `Field(None, alias="stop_sequences")` is different compared to
`Field(default=None, alias="stop_sequences")`.

To resolve the issue, the field is updated to:
```python
stop: Optional[Union[List[str], str]] = Field(default=None, alias="stop_sequences")
```
While this issue does not affect runtime behavior, it ensures
compatibility with LSPs and improves the development experience.
- **Issue:** N/A
- **Dependencies:** None
In the previous commit, the cached model key for this model was omitted.
When using the "gpt-4o-2024-11-20" model, the token count in the
callback appeared as 0, and the cost was recorded as 0.
We add model and cost information so that the token count and cost can
be displayed for the respective model.
- The message before modification is as follows.
```
Tokens Used: 0
Prompt Tokens: 0
Prompt Tokens Cached: 0
Completion Tokens: 0
Reasoning Tokens: 0
Successful Requests: 0
Total Cost (USD): $0.0
```
- The message after modification is as follows.
```
Tokens Used: 3783
Prompt Tokens: 3625
Prompt Tokens Cached: 2560
Completion Tokens: 158
Reasoning Tokens: 0
Successful Requests: 1
Total Cost (USD): $0.010642500000000001
```
Hi Erick. Coming back from a previous attempt, we now made a separate
package for the CrateDB adapter, called `langchain-cratedb`, as advised.
Other than registering the package within `libs/packages.yml`, this
patch includes a minimal amount of documentation to accompany the advent
of this new package. Let us know about any mistakes we made, or changes
you would like to see. Thanks, Andreas.
## About
- **Description:** Register a new database adapter package,
`langchain-cratedb`, providing traditional vector store, document
loader, and chat message history features for a start.
- **Addressed to:** @efriis, @eyurtsev
- **References:** GH-27710
- **Preview:** [Providers » More »
CrateDB](https://langchain-git-fork-crate-workbench-register-la-4bf945-langchain.vercel.app/docs/integrations/providers/cratedb/)
## Status
- **PyPI:** https://pypi.org/project/langchain-cratedb/
- **GitHub:** https://github.com/crate/langchain-cratedb
- **Documentation (CrateDB):**
https://cratedb.com/docs/guide/integrate/langchain/
- **Documentation (LangChain):** _This PR._
## Backlog?
Is this applicable for this kind of patch?
> - [ ] **Add tests and docs**: If you're adding a new integration,
please include
> 1. a test for the integration, preferably unit tests that do not rely
on network access,
> 2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
## Q&A
1. Notebooks that use the LangChain CrateDB adapter are currently at
[CrateDB LangChain
Examples](https://github.com/crate/cratedb-examples/tree/main/topic/machine-learning/llm-langchain),
and the documentation refers to them. Because they are derived from very
old blueprints coming from LangChain 0.0.x times, we guess they need a
refresh before adding them to `docs/docs/integrations`. Is it applicable
to merge this minimal package registration + documentation patch, which
already includes valid code snippets in `cratedb.mdx`, and add
corresponding notebooks on behalf of a subsequent patch later?
2. How would it work getting into the tabular list of _Integration
Packages_ enumerated on the [documentation entrypoint page about
Providers](https://python.langchain.com/docs/integrations/providers/)?
/cc Please also review, @ckurze, @wierdvanderhaar, @kneth,
@simonprickett, if you can find the time. Thanks!
- **Description:** `embed_documents` and `embed_query` was throwing off
the error as stated in the issue. The issue was that `Llama` client is
returning the embeddings in a nested list which is not being accounted
for in the current implementation and therefore the stated error is
being raised.
- **Issue:** #28813
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
community: optimize DataFrame document loader
**Description:**
Simplify the `lazy_load` method in the DataFrame document loader by
combining text extraction and metadata cleanup into a single operation.
This makes the code more concise while maintaining the same
functionality.
**Issue:** N/A
**Dependencies:** None
**Twitter handle:** N/A
- **Description:** The aload function, contrary to its name, is not an
asynchronous function, so it cannot work concurrently with other
asynchronous functions.
- **Issue:** #28336
- **Test: **: Done
- **Docs: **
[here](e0a95e5646/docs/docs/integrations/document_loaders/web_base.ipynb (L201))
- **Lint: ** All checks passed
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>