# Description
Milvus (and `pymilvus`) recently added the option to use [sparse
vectors](https://milvus.io/docs/sparse_vector.md#Sparse-Vector) with
appropriate search methods (e.g., `SPARSE_INVERTED_INDEX`) and
embeddings (e.g., `BM25`, `SPLADE`).
This PR allow creating a vector store using langchain's `Milvus` class,
setting the matching vector field type to `DataType.SPARSE_FLOAT_VECTOR`
and the default index type to `SPARSE_INVERTED_INDEX`.
It is only extending functionality, and backward compatible.
## Note
I also interested in extending the Milvus class further to support multi
vector search (aka hybrid search). Will be happy to discuss that. See
[here](https://github.com/langchain-ai/langchain/discussions/19955),
[here](https://github.com/langchain-ai/langchain/pull/20375), and
[here](https://github.com/langchain-ai/langchain/discussions/22886)
similar needs.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Add array data type for milvus vector store collection create
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Rohit Gupta <rohit.gupta2@walmart.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
This PR fixes a bug where if `enable_dynamic_field` and
`partition_key_field` are enabled at the same time, a pymilvus error
occurs.
Milvus requires the partition key field to be a full schema defined
field, and not a dynamic one, so it will throw the error "the specified
partition key field {field} not exist" when creating the collection.
When `enabled_dynamic_field` is set to `True`, all schema field creation
based on `metadatas` is skipped. This code now checks if
`partition_key_field` is set, and creates the field.
Integration test added.
**Twitter handle:** StuartMarshUK
---------
Co-authored-by: Stuart Marsh <stuart.marsh@qumata.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
add dynamic field feature to langchain_milvus
more unittest, more robustic
plan to deprecate the `metadata_field` in the future, because it's
function is the same as `enable_dynamic_field`, but the latter one is a
more advanced concept in milvus
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Erick Friis <erick@langchain.dev>