Commit Graph

6214 Commits

Author SHA1 Message Date
Nawaf Alharbi
decd77c515
community: fix an issue with deepinfra integration (#28715)
Thank you for contributing to LangChain!

- [x] **PR title**: langchain: add URL parameter to ChatDeepInfra class

- [x] **PR message**: add URL parameter to ChatDeepInfra class
- **Description:** This PR introduces a url parameter to the
ChatDeepInfra class in LangChain, allowing users to specify a custom
URL. Previously, the URL for the DeepInfra API was hardcoded to
"https://stage.api.deepinfra.com/v1/openai/chat/completions", which
caused issues when the staging endpoint was not functional. The _url
method was updated to return the value from the url parameter, enabling
greater flexibility and addressing the problem. out!

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-14 02:15:29 +00:00
Ben Chambers
008efada2c
[community]: Render documents to graphviz (#24830)
- **Description:** Adds a helper that renders documents with the
GraphVectorStore metadata fields to Graphviz for visualization. This is
helpful for understanding and debugging.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-14 02:02:09 +00:00
Erick Friis
288f204758
docs, community: aerospike docs update (#28717)
Co-authored-by: Jesse Schumacher <jschumacher@aerospike.com>
Co-authored-by: Jesse S <jschmidt@aerospike.com>
Co-authored-by: dylan <dwelch@aerospike.com>
2024-12-14 00:27:37 +00:00
Vimpas
337fed80a5
community: 🐛 PDF Filter Type Error (#27154)
Thank you for contributing to LangChain!

 **PR title**: "community: fix  PDF Filter Type Error"


  - **Description:** fix  PDF Filter Type Error"
  - **Issue:** the issue #27153 it fixes,
  - **Dependencies:** no
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!



- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-13 23:30:29 +00:00
Ryan Parker
12111cb922
community: fallback on core async atransform_documents method for MarkdownifyTransformer (#27866)
# Description
Implements the `atransform_documents` method for
`MarkdownifyTransformer` using the `asyncio` built-in library for
concurrency.

Note that this is mainly for API completeness when working with async
frameworks rather than for performance, since the `markdownify` function
is not I/O bound because it works with `Document` objects already in
memory.

# Issue
Fixes #27865

# Dependencies
No new dependencies added, but
[`markdownify`](https://github.com/matthewwithanm/python-markdownify) is
required since this PR updates the `markdownify` integration.

# Tests and docs
- Tests added
- I did not modify the docstrings since they already described the basic
functionality, and [the API docs also already included a
description](https://python.langchain.com/api_reference/community/document_transformers/langchain_community.document_transformers.markdownify.MarkdownifyTransformer.html#langchain_community.document_transformers.markdownify.MarkdownifyTransformer.atransform_documents).
If it would be helpful, I would be happy to update the docstrings and/or
the API docs.

# Lint and test
- [x] format
- [x] lint
- [x] test

I ran formatting with `make format`, linting with `make lint`, and
confirmed that tests pass using `make test`. Note that some unit tests
pass in CI but may fail when running `make_test`. Those unit tests are:
- `test_extract_html` (and `test_extract_html_async`)
- `test_strip_tags` (and `test_strip_tags_async`)
- `test_convert_tags` (and `test_convert_tags_async`)

The reason for the difference is that there are trailing spaces when the
tests are run in the CI checks, and no trailing spaces when run with
`make test`. I ensured that the tests pass in CI, but they may fail with
`make test` due to the addition of trailing spaces.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-13 22:32:22 +00:00
Manuel
af2e0a7ede
partners: add 'model' alias for consistency in embedding classes (#28374)
**Description:** This PR introduces a `model` alias for the embedding
classes that contain the attribute `model_name`, to ensure consistency
across the codebase, as suggested by a moderator in a previous PR. The
change aligns the usage of attribute names across the project (see for
example
[here](65deeddd5d/libs/partners/groq/langchain_groq/chat_models.py (L304))).
**Issue:** This PR addresses the suggestion from the review of issue
#28269.
**Dependencies:**  None

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-13 22:30:00 +00:00
Erick Friis
3107d78517
huggingface: fix standard test lint (#28714) 2024-12-13 22:18:54 +00:00
Kaiwei Zhang
b909d54e70
chroma[patch]: Update logic for assigning ids 2024-12-13 21:58:34 +00:00
Karthik Bharadhwaj
498f0249e2
community[minor]: Opensearch hybridsearch implementation (#25375)
community: add hybrid search in opensearch

# Langchain OpenSearch Hybrid Search Implementation

## Implementation of Hybrid Search: 

I have taken LangChain's OpenSearch integration to the next level by
adding hybrid search capabilities. Building on the existing
OpenSearchVectorSearch class, I have implemented Hybrid Search
functionality (which combines the best of both keyword and semantic
search). This new functionality allows users to harness the power of
OpenSearch's advanced hybrid search features without leaving the
familiar LangChain ecosystem. By blending traditional text matching with
vector-based similarity, the enhanced class delivers more accurate and
contextually relevant results. It's designed to seamlessly fit into
existing LangChain workflows, making it easy for developers to upgrade
their search capabilities.

In implementing the hybrid search for OpenSearch within the LangChain
framework, I also incorporated filtering capabilities. It's important to
note that according to the OpenSearch hybrid search documentation, only
post-filtering is supported for hybrid queries. This means that the
filtering is applied after the hybrid search results are obtained,
rather than during the initial search process.

**Note:** For the implementation of hybrid search, I strictly followed
the official OpenSearch Hybrid search documentation and I took
inspiration from
https://github.com/AndreasThinks/langchain/tree/feature/opensearch_hybrid_search
Thanks Mate!  

### Experiments

I conducted few experiments to verify that the hybrid search
implementation is accurate and capable of reproducing the results of
both plain keyword search and vector search.

Experiment - 1
Hybrid Search
Keyword_weight: 1, vector_weight: 0

I conducted an experiment to verify the accuracy of my hybrid search
implementation by comparing it to a plain keyword search. For this test,
I set the keyword_weight to 1 and the vector_weight to 0 in the hybrid
search, effectively giving full weightage to the keyword component. The
results from this hybrid search configuration matched those of a plain
keyword search, confirming that my implementation can accurately
reproduce keyword-only search results when needed. It's important to
note that while the results were the same, the scores differed between
the two methods. This difference is expected because the plain keyword
search in OpenSearch uses the BM25 algorithm for scoring, whereas the
hybrid search still performs both keyword and vector searches before
normalizing the scores, even when the vector component is given zero
weight. This experiment validates that my hybrid search solution
correctly handles the keyword search component and properly applies the
weighting system, demonstrating its accuracy and flexibility in
emulating different search scenarios.


Experiment - 2
Hybrid Search
keyword_weight = 0.0, vector_weight = 1.0

For experiment-2, I took the inverse approach to further validate my
hybrid search implementation. I set the keyword_weight to 0 and the
vector_weight to 1, effectively giving full weightage to the vector
search component (KNN search). I then compared these results with a pure
vector search. The outcome was consistent with my expectations: the
results from the hybrid search with these settings exactly matched those
from a standalone vector search. This confirms that my implementation
accurately reproduces vector search results when configured to do so. As
with the first experiment, I observed that while the results were
identical, the scores differed between the two methods. This difference
in scoring is expected and can be attributed to the normalization
process in hybrid search, which still considers both components even
when one is given zero weight. This experiment further validates the
accuracy and flexibility of my hybrid search solution, demonstrating its
ability to effectively emulate pure vector search when needed while
maintaining the underlying hybrid search structure.



Experiment - 3
Hybrid Search - balanced

keyword_weight = 0.5, vector_weight = 0.5

For experiment-3, I adopted a balanced approach to further evaluate the
effectiveness of my hybrid search implementation. In this test, I set
both the keyword_weight and vector_weight to 0.5, giving equal
importance to keyword-based and vector-based search components. This
configuration aims to leverage the strengths of both search methods
simultaneously. By setting both weights to 0.5, I intended to create a
scenario where the hybrid search would consider lexical matches and
semantic similarity equally. This balanced approach is often ideal for
many real-world applications, as it can capture both exact keyword
matches and contextually relevant results that might not contain the
exact search terms.

Kindly verify the notebook for the experiments conducted!  

**Notebook:**
https://github.com/karthikbharadhwajKB/Langchain_OpenSearch_Hybrid_search/blob/main/Opensearch_Hybridsearch.ipynb

### Instructions to follow for Performing Hybrid Search:

**Step-1: Instantiating OpenSearchVectorSearch Class:**
```python
opensearch_vectorstore = OpenSearchVectorSearch(
    index_name=os.getenv("INDEX_NAME"),
    embedding_function=embedding_model,
    opensearch_url=os.getenv("OPENSEARCH_URL"),
    http_auth=(os.getenv("OPENSEARCH_USERNAME"),os.getenv("OPENSEARCH_PASSWORD")),
    use_ssl=False,
    verify_certs=False,
    ssl_assert_hostname=False,
    ssl_show_warn=False
)
```

**Parameters:**
1. **index_name:** The name of the OpenSearch index to use.
2. **embedding_function:** The function or model used to generate
embeddings for the documents. It's assumed that embedding_model is
defined elsewhere in the code.
3. **opensearch_url:** The URL of the OpenSearch instance.
4. **http_auth:** A tuple containing the username and password for
authentication.
5. **use_ssl:** Set to False, indicating that the connection to
OpenSearch is not using SSL/TLS encryption.
6. **verify_certs:** Set to False, which means the SSL certificates are
not being verified. This is often used in development environments but
is not recommended for production.
7. **ssl_assert_hostname:** Set to False, disabling hostname
verification in SSL certificates.
8. **ssl_show_warn:** Set to False, suppressing SSL-related warnings.

**Step-2: Configure Search Pipeline:**

To initiate hybrid search functionality, you need to configures a search
pipeline first.

**Implementation Details:**

This method configures a search pipeline in OpenSearch that:
1. Normalizes the scores from both keyword and vector searches using the
min-max technique.
2. Applies the specified weights to the normalized scores.
3. Calculates the final score using an arithmetic mean of the weighted,
normalized scores.


**Parameters:**

* **pipeline_name (str):** A unique identifier for the search pipeline.
It's recommended to use a descriptive name that indicates the weights
used for keyword and vector searches.
* **keyword_weight (float):** The weight assigned to the keyword search
component. This should be a float value between 0 and 1. In this
example, 0.3 gives 30% importance to traditional text matching.
* **vector_weight (float):** The weight assigned to the vector search
component. This should be a float value between 0 and 1. In this
example, 0.7 gives 70% importance to semantic similarity.

```python
opensearch_vectorstore.configure_search_pipelines(
    pipeline_name="search_pipeline_keyword_0.3_vector_0.7",
    keyword_weight=0.3,
    vector_weight=0.7,
)
```

**Step-3: Performing Hybrid Search:**

After creating the search pipeline, you can perform a hybrid search
using the `similarity_search()` method (or) any methods that are
supported by `langchain`. This method combines both `keyword-based and
semantic similarity` searches on your OpenSearch index, leveraging the
strengths of both traditional information retrieval and vector embedding
techniques.

**parameters:**
* **query:** The search query string.
* **k:** The number of top results to return (in this case, 3).
* **search_type:** Set to `hybrid_search` to use both keyword and vector
search capabilities.
* **search_pipeline:** The name of the previously created search
pipeline.

```python
query = "what are the country named in our database?"

top_k = 3

pipeline_name = "search_pipeline_keyword_0.3_vector_0.7"

matched_docs = opensearch_vectorstore.similarity_search_with_score(
                query=query,
                k=top_k,
                search_type="hybrid_search",
                search_pipeline = pipeline_name
            )

matched_docs
```

twitter handle: @iamkarthik98

---------

Co-authored-by: Karthik Kolluri <karthik.kolluri@eidosmedia.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-12-13 16:34:12 -05:00
Philippe PRADOS
f3fb5a9c68
community[minor]: Fix json._validate_metadata_func() (#22842)
JSONparse, in _validate_metadata_func(), checks the consistency of the
_metadata_func() function. To do this, it invokes it and makes sure it
receives a dictionary in response. However, during the call, it does not
respect future calls, as shown on line 100. This generates errors if,
for example, the function is like this:
```python
        def generate_metadata(json_node:Dict[str,Any],kwargs:Dict[str,Any]) -> Dict[str,Any]:
             return {
                "source": url,
                "row": kwargs['seq_num'],
                "question":json_node.get("question"),
            }
        loader = JSONLoader(
            file_path=file_path,
            content_key="answer",
            jq_schema='.[]',
            metadata_func=generate_metadata,
            text_content=False)
```
To avoid this, the verification must comply with the specifications.
This patch does just that.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-12-13 21:24:20 +00:00
Keiichi Hirobe
67fd554512
core[patch]: throw exception indexing code if deletion fails in vectorstore (#28103)
The delete methods in the VectorStore and DocumentIndex interfaces
return a status indicating the result. Therefore, we can assume that
their implementations don't throw exceptions but instead return a result
indicating whether the delete operations have failed. The current
implementation doesn't check the returned value, so I modified it to
throw an exception when the operation fails.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-12-13 16:14:27 -05:00
Keiichi Hirobe
258b3be5ec
core[minor]: add new clean up strategy "scoped_full" to indexing (#28505)
~Note that this PR is now Draft, so I didn't add change to `aindex`
function and didn't add test codes for my change.
After we have an agreement on the direction, I will add commits.~

`batch_size` is very difficult to decide because setting a large number
like >10000 will impact VectorDB and RecordManager, while setting a
small number will delete records unnecessarily, leading to redundant
work, as the `IMPORTANT` section says.
On the other hand, we can't use `full` because the loader returns just a
subset of the dataset in our use case.

I guess many people are in the same situation as us.

So, as one of the possible solutions for it, I would like to introduce a
new argument, `scoped_full_cleanup`.
This argument will be valid only when `claneup` is Full. If True, Full
cleanup deletes all documents that haven't been updated AND that are
associated with source ids that were seen during indexing. Default is
False.

This change keeps backward compatibility.

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-12-13 20:35:25 +00:00
Eugene Yurtsev
ce90b25313
core[patch]: Update error message in indexing code for unreachable code assertion (#28712)
Minor update for error message that should never be triggered
2024-12-13 20:21:14 +00:00
Keiichi Hirobe
da28cf1f54
core[patch]: Reverts PR #25754 and add unit tests (#28702)
I reported the bug 2 weeks ago here:
https://github.com/langchain-ai/langchain/issues/28447

I believe this is a critical bug for the indexer, so I submitted a PR to
revert the change and added unit tests to prevent similar bugs from
being introduced in the future.

@eyurtsev Could you check this?
2024-12-13 15:13:06 -05:00
ScriptShi
b0a298894d
community[minor]: Add TablestoreVectorStore (#25767)
Thank you for contributing to LangChain!

- [x] **PR title**:  community: add TablestoreVectorStore



- [x] **PR message**: 
    - **Description:** add TablestoreVectorStore
    - **Dependencies:** none


- [x] **Add tests and docs**: If you're adding a new integration, please
include
  1. a test for the integration: yes
  2. an example notebook showing its use: yes

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-12-13 11:17:28 -08:00
Erick Friis
86b3c6e81c
community: make old stub for QuerySQLDataBaseTool private to skip api ref (#28711) 2024-12-13 10:43:23 -08:00
Martin Triska
05ebe1e66b
Community: add modified_since argument to O365BaseLoader (#28708)
## What are we doing in this PR
We're adding `modified_since` optional argument to `O365BaseLoader`.
When set, O365 loader will only load documents newer than
`modified_since` datetime.

## Why?
OneDrives / Sharepoints can contain large number of documents. Current
approach is to download and parse all files and let indexer to deal with
duplicates. This can be prohibitively time-consuming. Especially when
using OCR-based parser like
[zerox](fa06188834/libs/community/langchain_community/document_loaders/pdf.py (L948)).
This argument allows to skip documents that are older than known time of
indexing.

_Q: What if a file was modfied during last indexing process?
A: Users can set the `modified_since` conservatively and indexer will
still take care of duplicates._




If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-13 17:30:17 +00:00
Bagatur
fa06188834
community[patch]: fix QuerySQLDatabaseTool name (#28659)
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-12-12 19:16:03 -08:00
Erick Friis
48ab91b520
docs: more useful vercel warnings (#28699) 2024-12-13 03:07:24 +00:00
Michael Chin
28cb2cefc6
docs: Fix stack diagram in community README (#28685)
- **Description:** The stack diagram illustration in the community
README fails to render due to an invalid branch reference. This PR
replaces the broken image link with a valid one referencing master
branch.
2024-12-12 13:33:50 -08:00
Botong Zhu
13c3c4a210
community: fixes json loader not getting texts with json standard (#27327)
This PR fixes JSONLoader._get_text not converting objects to json string
correctly.
If an object is serializable and is not a dict, JSONLoader will use
python built-in str() method to convert it to string. This may cause
object converted to strings not following json standard. For example, a
list will be converted to string with single quotes, and if json.loads
try to load this string, it will cause error.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-12 19:33:45 +00:00
Lorenzo
4149c0dd8d
community: add method to create branch and list files for gitlab tool (#27883)
### About

- **Description:** In the Gitlab utilities used for the Gitlab tool
there are no methods to create branches, list branches and files, as
this is already done for Github
- **Issue:** None
- **Dependencies:** None

This Pull request add the methods:
- create_branch
- list_branches_in_repo
- set_active_branch
- list_files_in_main_branch
- list_files_in_bot_branch
- list_files_from_directory

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-12 19:11:35 +00:00
Prathamesh Nimkar
ca054ed1b1
community: ChatSnowflakeCortex - Add streaming functionality (#27753)
Description:
snowflake.py
Add _stream and _stream_content methods to enable streaming
functionality
fix pydantic issues and added functionality with the overall langchain
version upgrade
added bind_tools method for agentic workflows support through langgraph
updated the _generate method to account for agentic workflows support
through langgraph
cosmetic changes to comments and if conditions

snowflake.ipynb
Added _stream example
cosmetic changes to comments
fixed lint errors

check_pydantic.sh
Decreased counter from 126 to 125 as suggested when formatting

---------

Co-authored-by: Prathamesh Nimkar <prathamesh.nimkar@snowflake.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-11 18:35:40 -08:00
Wang, Yi
d834c6b618
huggingface: fix tool argument serialization in _convert_TGI_message_to_LC_message (#26075)
Currently `_convert_TGI_message_to_LC_message` replaces `'` in the tool
arguments, so an argument like "It's" will be converted to `It"s` and
could cause a json parser to fail.

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Vadym Barda <vadym@langchain.dev>
2024-12-11 18:34:32 -08:00
Lakindu Boteju
5a31792bf1
community: Add support for cross-region inference profile IDs in Bedrock Anthropic Claude token cost calculation (#28167)
This change modifies the token cost calculation logic to support
cross-region inference profile IDs for Anthropic Claude models. Instead
of explicitly listing all regional variants of new inference profile IDs
in the cost dictionaries, the code now extracts a base model ID from the
input model ID (or inference profile ID), making it more maintainable
and automatically supporting new regional variants.

These inference profile IDs follow the format:
`<region>.<vendor>.<model-name>` (e.g.,
`us.anthropic.claude-3-haiku-xxx`, `eu.anthropic.claude-3-sonnet-xxx`).

Cross-region inference profiles are system-defined identifiers that
enable distributing model inference requests across multiple AWS
regions. They help manage unplanned traffic bursts and enhance
resilience during peak demands without additional routing costs.

References for Amazon Bedrock's cross-region inference profiles:-
-
https://docs.aws.amazon.com/bedrock/latest/userguide/cross-region-inference.html
-
https://docs.aws.amazon.com/bedrock/latest/userguide/inference-profiles-support.html

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-12 02:33:50 +00:00
fatmelon
d1e0ec7b55
community: VectorStores: Azure Cosmos DB Mongo vCore with DiskANN (#27329)
# Description
Add a new vector index type `diskann` to Azure Cosmos DB Mongo vCore
vector store. Paper of DiskANN can be found here [DiskANN: Fast Accurate
Billion-point Nearest Neighbor Search on a Single
Node](https://proceedings.neurips.cc/paper_files/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf).

## Sample Usage
```python
from pymongo import MongoClient

# INDEX_NAME = "izzy-test-index-2"
# NAMESPACE = "izzy_test_db.izzy_test_collection"
# DB_NAME, COLLECTION_NAME = NAMESPACE.split(".")

client: MongoClient = MongoClient(CONNECTION_STRING)
collection = client[DB_NAME][COLLECTION_NAME]

model_deployment = os.getenv(
    "OPENAI_EMBEDDINGS_DEPLOYMENT", "smart-agent-embedding-ada"
)
model_name = os.getenv("OPENAI_EMBEDDINGS_MODEL_NAME", "text-embedding-ada-002")

vectorstore = AzureCosmosDBVectorSearch.from_documents(
    docs,
    openai_embeddings,
    collection=collection,
    index_name=INDEX_NAME,
)

# Read more about these variables in detail here. https://learn.microsoft.com/en-us/azure/cosmos-db/mongodb/vcore/vector-search
maxDegree = 40
dimensions = 1536
similarity_algorithm = CosmosDBSimilarityType.COS
kind = CosmosDBVectorSearchType.VECTOR_DISKANN
lBuild = 20

vectorstore.create_index(
            dimensions=dimensions,
            similarity=similarity_algorithm,
            kind=kind ,
            max_degree=maxDegree,
            l_build=lBuild,
        )
```

## Dependencies
No additional dependencies were added

---------

Co-authored-by: Yang Qiao (from Dev Box) <yangqiao@microsoft.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-12 01:54:04 +00:00
manukychen
ba9b95cd23
Community: Adding bulk_size as a setable param for OpenSearchVectorSearch (#28325)
Description:
When using langchain.retrievers.parent_document_retriever.py with
vectorstore is OpenSearchVectorSearch, I found that the bulk_size param
I passed into OpenSearchVectorSearch class did not work on my
ParentDocumentRetriever.add_documents() function correctly, it will be
overwrite with int 500 the function which OpenSearchVectorSearch class
had (e.g., add_texts(), add_embeddings()...).

So I made this PR requset to fix this, thanks!

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-12 01:45:22 +00:00
xintoteai
45f9c9ae88
langchain: fixed weaviate (v4) vectorstore import for self-query retriever (#28675)
Co-authored-by: Xin Heng <xin.heng@gmail.com>
2024-12-11 15:53:41 -08:00
Thomas van Dongen
ee640d6bd3
community: fixed bug in model2vec embedding code (#28670)
This PR fixes a bug with the current implementation for Model2Vec
embeddings where `embed_documents` does not work as expected.

- **Description**: the current implementation uses `encode_as_sequence`
for encoding documents. This is incorrect, as `encode_as_sequence`
creates token embeddings and not mean embeddings. The normal `encode`
function handles both single and batched inputs and should be used
instead. The return type was also incorrect, as encode returns a NumPy
array. This PR converts the embedding to a list so that the output is
consistent with the Embeddings ABC.
2024-12-11 15:50:56 -08:00
Brian Sharon
b20230c800
community: use correct id_key when deleting by id in LanceDB wrapper (#28655)
- **Description:** The current version of the `delete` method assumes
that the id field will always be called `id`.
- **Issue:** n/a
- **Dependencies:** n/a
- **Twitter handle:** ugh, Twitter :D 

---

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-11 23:49:35 +00:00
Mohammad Mohtashim
fa155a422f
[Community]: requests_kwargs not being used in _fetch (#28646)
- **Description:** `requests_kwargs` is not being passed to `_fetch`
which is fetching pages asynchronously. In this PR, making sure that we
are passing `requests_kwargs` to `_fetch` just like `_scrape`.
- **Issue:** #28634

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-11 23:46:54 +00:00
Mohammad Mohtashim
a37afbe353
mistral[minor]: Added Retrying Mechanism in case of Request Rate Limit Error for MistralAIEmbeddings (#27818)
- **Description:**: In the event of a Rate Limit Error from the
MistralAI server, the response JSON raises a KeyError. To address this,
a simple retry mechanism has been implemented to handle cases where the
request limit is exceeded.
  - **Issue:** #27790

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-12-11 17:53:42 -05:00
Vincent Zhang
df5008fe55
community[minor]: FAISS Filter Function Enhancement with Advanced Query Operators (#28207)
## Description
We are submitting as a team of four for a project. Other team members
are @RuofanChen03, @LikeWang10067, @TANYAL77.

This pull requests expands the filtering capabilities of the FAISS
vectorstore by adding MongoDB-style query operators indicated as
follows, while including comprehensive testing for the added
functionality.
- $eq (equals)
- $neq (not equals)
- $gt (greater than)
- $lt (less than)
- $gte (greater than or equal)
- $lte (less than or equal)
- $in (membership in list)
- $nin (not in list)
- $and (all conditions must match)
- $or (any condition must match)
- $not (negation of condition)


## Issue
This closes https://github.com/langchain-ai/langchain/issues/26379.


## Sample Usage
```python
import faiss
import asyncio
from langchain_community.vectorstores import FAISS
from langchain.schema import Document
from langchain_huggingface import HuggingFaceEmbeddings

embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
documents = [
    Document(page_content="Process customer refund request", metadata={"schema_type": "financial", "handler_type": "refund",}),
    Document(page_content="Update customer shipping address", metadata={"schema_type": "customer", "handler_type": "update",}),
    Document(page_content="Process payment transaction", metadata={"schema_type": "financial", "handler_type": "payment",}),
    Document(page_content="Handle customer complaint", metadata={"schema_type": "customer","handler_type": "complaint",}),
    Document(page_content="Process invoice payment", metadata={"schema_type": "financial","handler_type": "payment",})
]

async def search(vectorstore, query, schema_type, handler_type, k=2):
    schema_filter = {"schema_type": {"$eq": schema_type}}
    handler_filter = {"handler_type": {"$eq": handler_type}}
    combined_filter = {
        "$and": [
            schema_filter,
            handler_filter,
        ]
    }
    base_retriever = vectorstore.as_retriever(
        search_kwargs={"k":k, "filter":combined_filter}
    )
    return await base_retriever.ainvoke(query)

async def main():
    vectorstore = FAISS.from_texts(
        texts=[doc.page_content for doc in documents],
        embedding=embeddings,
        metadatas=[doc.metadata for doc in documents]
    )
    
    def printt(title, documents):
        print(title)
        if not documents:
            print("\tNo documents found.")
            return
        for doc in documents:
            print(f"\t{doc.page_content}. {doc.metadata}")

    printt("Documents:", documents)
    printt('\nquery="process payment", schema_type="financial", handler_type="payment":', await search(vectorstore, query="process payment", schema_type="financial", handler_type="payment", k=2))
    printt('\nquery="customer update", schema_type="customer", handler_type="update":', await search(vectorstore, query="customer update", schema_type="customer", handler_type="update", k=2))
    printt('\nquery="refund process", schema_type="financial", handler_type="refund":', await search(vectorstore, query="refund process", schema_type="financial", handler_type="refund", k=2))
    printt('\nquery="refund process", schema_type="financial", handler_type="foobar":', await search(vectorstore, query="refund process", schema_type="financial", handler_type="foobar", k=2))
    print()

if __name__ == "__main__":asyncio.run(main())
```

## Output
```
Documents:
	Process customer refund request. {'schema_type': 'financial', 'handler_type': 'refund'}
	Update customer shipping address. {'schema_type': 'customer', 'handler_type': 'update'}
	Process payment transaction. {'schema_type': 'financial', 'handler_type': 'payment'}
	Handle customer complaint. {'schema_type': 'customer', 'handler_type': 'complaint'}
	Process invoice payment. {'schema_type': 'financial', 'handler_type': 'payment'}

query="process payment", schema_type="financial", handler_type="payment":
	Process payment transaction. {'schema_type': 'financial', 'handler_type': 'payment'}
	Process invoice payment. {'schema_type': 'financial', 'handler_type': 'payment'}

query="customer update", schema_type="customer", handler_type="update":
	Update customer shipping address. {'schema_type': 'customer', 'handler_type': 'update'}

query="refund process", schema_type="financial", handler_type="refund":
	Process customer refund request. {'schema_type': 'financial', 'handler_type': 'refund'}

query="refund process", schema_type="financial", handler_type="foobar":
	No documents found.

```

---------

Co-authored-by: ruofan chen <ruofan.is.awesome@gmail.com>
Co-authored-by: RickyCowboy <like.wang@mail.utoronto.ca>
Co-authored-by: Shanni Li <tanya.li@mail.utoronto.ca>
Co-authored-by: RuofanChen03 <114096642+ruofanchen03@users.noreply.github.com>
Co-authored-by: Like Wang <102838708+likewang10067@users.noreply.github.com>
2024-12-11 17:52:22 -05:00
like
3048a9a26d
community: tongyi multimodal response format fix to support langchain (#28645)
Description: The multimodal(tongyi) response format "message": {"role":
"assistant", "content": [{"text": "图像"}]}}]} is not compatible with
LangChain.
Dependencies: No

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-10 21:13:26 +00:00
Bagatur
d0e662e43b
community[patch]: Release 0.3.11 (#28658) 2024-12-10 20:51:13 +00:00
Bagatur
91227ad7fd
langchain[patch]: Release 0.3.11 (#28657) 2024-12-10 12:28:14 -08:00
Bagatur
1fbd86a155
core[patch]: Release 0.3.24 (#28656) 2024-12-10 20:19:21 +00:00
Bagatur
e6a62d8422
core,langchain,community[patch]: allow langsmith 0.2 (#28598) 2024-12-10 18:50:58 +00:00
ccurme
bc4dc7f4b1
ollama[patch]: permit streaming for tool calls (#28654)
Resolves https://github.com/langchain-ai/langchain/issues/28543

Ollama recently
[released](https://github.com/ollama/ollama/releases/tag/v0.4.6) support
for streaming tool calls. Previously we would override the `stream`
parameter if tools were passed in.

Covered in standard tests here:
c1d348e95d/libs/standard-tests/langchain_tests/integration_tests/chat_models.py (L893-L897)

Before, the test generates one message chunk:
```python
[
    AIMessageChunk(
        content='',
        additional_kwargs={},
        response_metadata={
            'model': 'llama3.1',
            'created_at': '2024-12-10T17:49:04.468487Z',
            'done': True,
            'done_reason': 'stop',
            'total_duration': 525471208,
            'load_duration': 19701000,
            'prompt_eval_count': 170,
            'prompt_eval_duration': 31000000,
            'eval_count': 17,
            'eval_duration': 473000000,
            'message': Message(
                role='assistant',
                content='',
                images=None,
                tool_calls=[
                    ToolCall(
                        function=Function(name='magic_function', arguments={'input': 3})
                    )
                ]
            )
        },
        id='run-552bbe0f-8fb2-4105-ada1-fa38c1db444d',
        tool_calls=[
            {
                'name': 'magic_function',
                'args': {'input': 3},
                'id': 'b0a4dc07-7d7a-487b-bd7b-ad062c2363a2',
                'type': 'tool_call',
            },
        ],
        usage_metadata={
            'input_tokens': 170, 'output_tokens': 17, 'total_tokens': 187
        },
        tool_call_chunks=[
            {
                'name': 'magic_function',
                'args': '{"input": 3}',
                'id': 'b0a4dc07-7d7a-487b-bd7b-ad062c2363a2',
                'index': None,
                'type': 'tool_call_chunk',
            }
        ]
    )
]
```

After, it generates two (tool call in one, response metadata in
another):
```python
[
    AIMessageChunk(
        content='',
        additional_kwargs={},
        response_metadata={},
        id='run-9a3f0860-baa1-4bae-9562-13a61702de70',
        tool_calls=[
            {
                'name': 'magic_function',
                'args': {'input': 3},
                'id': '5bbaee2d-c335-4709-8d67-0783c74bd2e0',
                'type': 'tool_call',
            },
        ],
        tool_call_chunks=[
            {
                'name': 'magic_function',
                'args': '{"input": 3}',
                'id': '5bbaee2d-c335-4709-8d67-0783c74bd2e0',
                'index': None,
                'type': 'tool_call_chunk',
            },
        ],
    ),
    AIMessageChunk(
        content='',
        additional_kwargs={},
        response_metadata={
            'model': 'llama3.1',
            'created_at': '2024-12-10T17:46:43.278436Z',
            'done': True,
            'done_reason': 'stop',
            'total_duration': 514282750,
            'load_duration': 16894458,
            'prompt_eval_count': 170,
            'prompt_eval_duration': 31000000,
            'eval_count': 17,
            'eval_duration': 464000000,
            'message': Message(
                role='assistant', content='', images=None, tool_calls=None
            ),
        },
        id='run-9a3f0860-baa1-4bae-9562-13a61702de70',
        usage_metadata={
            'input_tokens': 170, 'output_tokens': 17, 'total_tokens': 187
        }
    ),
]
```
2024-12-10 12:54:37 -05:00
Johannes Mohren
c1d348e95d
doc-loader: retain Azure Doc Intelligence API metadata in Document parser (#28382)
**Description**:
This PR modifies the doc_intelligence.py parser in the community package
to include all metadata returned by the Azure Doc Intelligence API in
the Document object. Previously, only the parsed content (markdown) was
retained, while other important metadata such as bounding boxes (bboxes)
for images and tables was discarded. These image bboxes are crucial for
supporting use cases like multi-modal RAG workflows when using Azure Doc
Intelligence.

The change ensures that all information returned by the Azure Doc
Intelligence API is preserved by setting the metadata attribute of the
Document object to the entire result returned by the API, rather than an
empty dictionary. This extends the parser's utility for complex use
cases without breaking existing functionality.

**Issue**:
This change does not address a specific issue number, but it resolves a
critical limitation in supporting multimodal workflows when using the
LangChain wrapper for the Azure API.

**Dependencies**:
No additional dependencies are required for this change.

---------

Co-authored-by: jmohren <johannes.mohren@aol.de>
2024-12-10 11:22:58 -05:00
Alex Tonkonozhenko
0d20c314dd
Confluence Loader: Fix CQL loading (#27620)
fix #12082

<!---
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
-->
2024-12-10 11:05:23 -05:00
Katarina Supe
aba2711e7f
community: update Memgraph integration (#27017)
**Description:**
- **Memgraph** no longer relies on `Neo4jGraphStore` but **implements
`GraphStore`**, just like other graph databases.
- **Memgraph** no longer relies on `GraphQAChain`, but implements
`MemgraphQAChain`, just like other graph databases.
- The refresh schema procedure has been updated to try using `SHOW
SCHEMA INFO`. The fallback uses Cypher queries (a combination of schema
and Cypher) → **LangChain integration no longer relies on MAGE
library**.
- The **schema structure** has been reformatted. Regardless of the
procedures used to get schema, schema structure is the same.
- The `add_graph_documents()` method has been implemented. It transforms
`GraphDocument` into Cypher queries and creates a graph in Memgraph. It
implements the ability to use `baseEntityLabel` to improve speed
(`baseEntityLabel` has an index on the `id` property). It also
implements the ability to include sources by creating a `MENTIONS`
relationship to the source document.
- Jupyter Notebook for Memgraph has been updated.
- **Issue:** /
- **Dependencies:** /
- **Twitter handle:** supe_katarina (DX Engineer @ Memgraph)

Closes #25606
2024-12-10 10:57:21 -05:00
ccurme
5c6e2cbcda
ollama[patch]: support structured output (#28629)
- Bump minimum version of `ollama` to 0.4.4 (which also addresses
https://github.com/langchain-ai/langchain/issues/28607).
- Support recently-released [structured
output](https://ollama.com/blog/structured-outputs) feature. This can be
accessed by calling `.with_structured_output` with
`method="json_schema"` (choice of name
[mirrors](https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html#langchain_openai.chat_models.base.ChatOpenAI.with_structured_output)
what we have for OpenAI's structured output feature).

`ChatOllama` previously implemented `.with_structured_output` via the
[base
implementation](ec9b41431e/libs/core/langchain_core/language_models/chat_models.py (L1117)).
2024-12-10 10:36:00 -05:00
Bagatur
24292c4a31
core[patch]: Release 0.3.23 (#28648) 2024-12-10 10:01:16 +00:00
Bagatur
e24f86e55f
core[patch]: return ToolMessage from tool (#28605) 2024-12-10 09:59:38 +00:00
Erick Friis
ef2f875dfb
core: deprecate PipelinePromptTemplate (#28644) 2024-12-10 03:56:48 +00:00
TamagoTorisugi
0f0df2df60
fix: Set default search_type to 'similarity' in as_retriever method of AzureSearch (#28376)
**Description**
This PR updates the `as_retriever` method in the `AzureSearch` to ensure
that the `search_type` parameter defaults to 'similarity' when not
explicitly provided.

Previously, if the `search_type` was omitted, it did not default to any
specific value. So it was inherited from
`AzureSearchVectorStoreRetriever`, which defaults to 'hybrid'.

This change ensures that the intended default behavior aligns with the
expected usage.

**Issue**
No specific issue was found related to this change.

**Dependencies**
No new dependencies are introduced with this change.

---------

Co-authored-by: prrao87 <prrao87@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-10 03:40:04 +00:00
Prashanth Rao
8c6eec5f25
community: KuzuGraph needs allow_dangerous_requests, add graph documents via LLMGraphTransformer (#27949)
- [x] **PR title**: "community: Kuzu - Add graph documents via
LLMGraphTransformer"
- This PR adds a new method `add_graph_documents` to use the
`GraphDocument`s extracted by `LLMGraphTransformer` and store in a Kùzu
graph backend.
- This allows users to transform unstructured text into a graph that
uses Kùzu as the graph store.

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: pookam90 <pookam@microsoft.com>
Co-authored-by: Pooja Kamath <60406274+Pookam90@users.noreply.github.com>
Co-authored-by: hsm207 <hsm207@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-10 03:15:28 +00:00
Filip Ratajczak
4e743b5427
Core: google docstring parsing fix (#28404)
Thank you for contributing to LangChain!

- [ ] **PR title**: "core: google docstring parsing fix"


- [x] **PR message**:
- **Description:** Added a solution for invalid parsing of google
docstring such as:
    Args:
net_annual_income (float): The user's net annual income (in current year
dollars).
- **Issue:** Previous code would return arg = "net_annual_income
(float)" which would cause exception in
_validate_docstring_args_against_annotations
    - **Dependencies:** None

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-10 00:27:25 +00:00
Arnav Priyadarshi
b78b2f7a28
community[fix]: Update Perplexity to pass parameters into API calls (#28421)
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
  - Example: "community: add foobar LLM"


- **Description:** I realized the invocation parameters were not being
passed into `_generate` so I added those in but then realized that the
parameters contained some old fields designed for an older openai client
which I removed. Parameters work fine now.
- **Issue:** Fixes #28229 
- **Dependencies:** No new dependencies.  
- **Twitter handle:** @arch_plane

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-10 00:23:31 +00:00
Clément Jumel
cf6d1c0ae7
docs: add Linkup integration documentation (#28366)
## Description

First of all, thanks for the great framework that is LangChain!

At [Linkup](https://www.linkup.so/) we're working on an API to connect
LLMs and agents to the internet and our partner sources. We'd be super
excited to see our API integrated in LangChain! This essentially
consists in adding a LangChain retriever and tool, which is done in our
own [package](https://pypi.org/project/langchain-linkup/). Here we're
simply following the [integration
documentation](https://python.langchain.com/docs/contributing/how_to/integrations/)
and update the documentation of LangChain to mention the Linkup
integration.

We do have tests (both units & integration) in our [source
code](https://github.com/LinkupPlatform/langchain-linkup), and tried to
follow as close as possible the [integration
documentation](https://python.langchain.com/docs/contributing/how_to/integrations/)
which specifically requests to focus on documentation changes for an
integration PR, so I'm not adding tests here, even though the PR
checklist seems to suggest so. Feel free to correct me if I got this
wrong!

By the way, we would be thrilled by being mentioned in the list of
providers which have standalone packages
[here](https://langchain-git-fork-linkupplatform-cj-doc-langchain.vercel.app/docs/integrations/providers/),
is there something in particular for us to do for that? 🙂

## Twitter handle

Linkup_platform
<!--
## PR Checklist

Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
--!>
2024-12-09 14:36:25 -08:00
Amir Sadeghi
2c49f587aa
community[fix]: could not locate runnable browser (#28289)
set open_browser to false to resolve "could not locate runnable browser"
error while default browser is None

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-09 21:05:52 +00:00
Martin Triska
75bc6bb191
community: [bugfix] fix source path for office files in O365 (#28260)
# What problem are we fixing?

Currently documents loaded using `O365BaseLoader` fetch source from
`file.web_url` (where `file` is `<class 'O365.drive.File'>`). This works
well for `.pdf` documents. Unfortunately office documents (`.xlsx`,
`.docx` ...) pass their `web_url` in following format:

`https://sharepoint_address/sites/path/to/library/root/Doc.aspx?sourcedoc=%XXXXXXXX-1111-1111-XXXX-XXXXXXXXXX%7D&file=filename.xlsx&action=default&mobileredirect=true`

This obfuscates the path to the file. This PR utilizes the parrent
folder's path and file name to reconstruct the actual location of the
file. Knowing the file's location can be crucial for some RAG
applications (path to the file can carry information we don't want to
loose).

@vbarda Could you please look at this one? I'm @-mentioning you since
we've already closed some PRs together :-)

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-09 12:34:59 -08:00
Erick Friis
534b8f4364
standard-tests: release 0.3.7 (#28637) 2024-12-09 15:12:18 -05:00
Naka Masato
ce3b69aa05
community: add include_labels option to ConfluenceLoader (#28259)
## **Description:**

Enable `ConfluenceLoader` to include labels with `include_labels` option
(`false` by default for backward compatibility). and the labels are set
to `metadata` in the `Document`. e.g. `{"labels": ["l1", "l2"]}`

## Notes

Confluence API supports to get labels by providing `metadata.labels` to
`expand` query parameter

All of the following functions support `expand` in the same way:
- confluence.get_page_by_id
- confluence.get_all_pages_by_label
- confluence.get_all_pages_from_space
- cql (internally using
[/api/content/search](https://developer.atlassian.com/cloud/confluence/rest/v1/api-group-content/#api-wiki-rest-api-content-search-get))

## **Issue:**

No issue related to this PR.

## **Dependencies:** 

No changes.

## **Twitter handle:** 

[@gymnstcs](https://x.com/gymnstcs)


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-09 19:35:01 +00:00
Rajendra Kadam
242fee11be
community[minor] Pebblo: Support for new Pinecone class PineconeVectorStore (#28253)
- **Description:** Support for new Pinecone class PineconeVectorStore in
PebbloRetrievalQA.
- **Issue:** NA
- **Dependencies:** NA
- **Tests:** -

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-09 19:33:54 +00:00
nikitajoyn
9fcd203556
partners/mistralai: Fix KeyError in Vertex AI stream (#28624)
- **Description:** Streaming response from Mistral model using Vertex AI
raises KeyError when trying to access `choices` key, that the last chunk
doesn't have. The fix is to access the key safely using `get()`.
  - **Issue:** https://github.com/langchain-ai/langchain/issues/27886
  - **Dependencies:**
  - **Twitter handle:**
2024-12-09 14:14:58 -05:00
maang-h
b64d846347
docs: Standardize MoonshotChat docstring (#28159)
- **Description:** Add docstring

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-09 18:46:25 +00:00
Erick Friis
4c70ffff01
standard-tests: sync/async vectorstore tests conditional (#28636)
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-12-09 18:02:55 +00:00
ccurme
ffb5c1905a
openai[patch]: release 0.2.12 (#28633) 2024-12-09 12:38:13 -05:00
ccurme
6e6061fe73
openai[patch]: bump minimum SDK version (#28632)
Resolves https://github.com/langchain-ai/langchain/issues/28625
2024-12-09 11:28:05 -05:00
Mohammad Mohtashim
ec9b41431e
[Core]: Small Docstring Clarification for BaseTool (#28148)
- **Description:** `kwargs` are not being passed to `run` of the
`BaseTool` which has been fixed
- **Issue:** #28114

---------

Co-authored-by: Stevan Kapicic <kapicic.ste1@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-09 06:10:19 +00:00
Erick Friis
cef21a0b49
cli: warning on app add (#28619)
instead of #28128
2024-12-09 06:07:14 +00:00
Ankit Dangi
90f162efb6
text-splitters: add pydocstyle linting (#28127)
As seen in #23188, turned on Google-style docstrings by enabling
`pydocstyle` linting in the `text-splitters` package. Each resulting
linting error was addressed differently: ignored, resolved, suppressed,
and missing docstrings were added.

Fixes one of the checklist items from #25154, similar to #25939 in
`core` package. Ran `make format`, `make lint` and `make test` from the
root of the package `text-splitters` to ensure no issues were found.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-09 06:01:03 +00:00
WGNW_MG
eabe587787
community[patch]:Fix for get_openai_callback() return token_cost=0.0 when model is gpt-4o-11-20 (#28408)
- **Description:** update MODEL_COST_PER_1K_TOKENS for new gpt-4o-11-20.
- **Issue:** with latest gpt-4o-11-20, openai callback return
token_cost=0.0
- **Dependencies:** None (just simple dict fix.)
- **Twitter handle:** I Don't Use Twitter. 
- (However..., I have a YouTube channel. Could you upload this there, by
any chance?
https://www.youtube.com/@%EA%B2%9C%EC%B0%BD%EB%B6%80%EA%B3%A0%EB%AC%B8AI%EC%9E%90%EB%AC%B8%EC%84%BC%EC%84%B8)
2024-12-08 20:46:50 -08:00
Fahim Zaman
481c4bfaba
core[patch]: Fixed trim functions, and added corresponding unit test for the solved issue (#28429)
- **Description:** 
- Trim functions were incorrectly deleting nodes with more than 1
outgoing/incoming edge, so an extra condition was added to check for
this directly. A unit test "test_trim_multi_edge" was written to test
this test case specifically.
- **Issue:** 
  - Fixes #28411 
  - Fixes https://github.com/langchain-ai/langgraph/issues/1676
- **Dependencies:** 
  - No changes were made to the dependencies

- [x] Unit tests were added to verify the changes.
- [x] Updated documentation where necessary.
- [x] Ran make format, make lint, and make test to ensure compliance
with project standards.

---------

Co-authored-by: Tasif Hussain <tasif006@gmail.com>
2024-12-08 20:45:28 -08:00
Marco Perini
2354bb7bfa
partners: 🕷️🦜 ScrapeGraph API Integration (#28559)
Hi Langchain team!

I'm the co-founder and mantainer at
[ScrapeGraphAI](https://scrapegraphai.com/).
By following the integration
[guide](https://python.langchain.com/docs/contributing/how_to/integrations/publish/)
on your site, I have created a new lib called
[langchain-scrapegraph](https://github.com/ScrapeGraphAI/langchain-scrapegraph).

With this PR I would like to integrate Scrapegraph as provider in
Langchain, adding the required documentation files.
Let me know if there are some changes to be made to be properly
integrated both in the lib and in the documentation.

Thank you 🕷️🦜

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-09 02:38:21 +00:00
Abhinav
317a38b83e
community[minor]: Add support for modle2vec embeddings (#28507)
This PR add an embeddings integration for model2vec, the
`Model2vecEmbeddings` class.

- **Description**: [Model2Vec](https://github.com/MinishLab/model2vec)
lets you turn any sentence transformer into a really small static model
and makes running the model faster.
- **Issue**:
- **Dependencies**: model2vec
([pypi](https://pypi.org/project/model2vec/))
- **Twitter handle:**:

- [x] **Add tests and docs**: 
-
[Test](https://github.com/blacksmithop/langchain/blob/model2vec_embeddings/libs/community/langchain_community/embeddings/model2vec.py),
[docs](https://github.com/blacksmithop/langchain/blob/model2vec_embeddings/docs/docs/integrations/text_embedding/model2vec.ipynb)

- [x] **Lint and test**:

---------

Co-authored-by: Abhinav KM <abhinav.m@zerone-consulting.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-12-09 02:17:22 +00:00
Mohammad Mohtashim
524ee6d9ac
Invalid tool_choice being passed to ChatLiteLLM (#28198)
- **Description:** Invalid `tool_choice` is given to `ChatLiteLLM` to
`bind_tools` due to it's parent's class default value being pass through
`with_structured_output`.
- **Issue:** #28176
2024-12-07 14:33:40 -05:00
Erick Friis
dd0085a9ff
docs: standard tests to markdown, load templates from files (#28603) 2024-12-07 01:37:21 +00:00
Erick Friis
5e8553c31a
standard-tests: retriever docstrings (#28596) 2024-12-07 00:32:19 +00:00
ccurme
d801c6ffc7
tests[patch]: nits (#28601) 2024-12-07 00:13:04 +00:00
Erick Friis
07c2ac765a
community: release 0.3.10 (#28600) 2024-12-07 00:07:13 +00:00
Erick Friis
4a7dc6ec4c
standard-tests: release 0.3.6 (#28599) 2024-12-07 00:05:04 +00:00
ccurme
80a88f8f04
tests[patch]: update API ref for chat models (#28594) 2024-12-06 19:00:14 -05:00
Erick Friis
0eb7ab65f1
multiple: fix xfailed signatures (#28597) 2024-12-06 15:39:47 -08:00
Erick Friis
b7c2029e84
standard-tests: root docstrings (#28595) 2024-12-06 15:14:52 -08:00
Erick Friis
9e2abcd152
standard-tests: show right classes in api docs (#28591) 2024-12-06 14:48:13 -08:00
Erick Friis
246c10a1cc
standard-tests: private members and tools unit troubleshoot (#28590) 2024-12-06 13:52:58 -08:00
Erick Friis
e6663b69f3
langchain: release 0.3.10 (#28585) 2024-12-06 20:20:24 +00:00
Erick Friis
c38b845d7e
core: fix path test (#28584) 2024-12-06 20:05:18 +00:00
ccurme
2c6bc74cb1
multiple: combine sync/async vector store standard test suites (#28580)
Breaking change in `langchain-tests`.
2024-12-06 14:55:06 -05:00
Bagatur
dda9f90047
core[patch]: Release 0.3.22 (#28582) 2024-12-06 19:36:53 +00:00
ccurme
f3dc142d3c
cli[patch]: implement minimal starter vector store (#28577)
Basically the same as core's in-memory vector store. Removed some
optional methods.
2024-12-06 13:10:22 -05:00
Erick Friis
5277a021c1
docs: raw loader codeblock (#28548)
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-12-06 09:26:34 -08:00
Erick Friis
18386c16c7
core, tests: more tolerant _aget_relevant_documents function (#28462) 2024-12-06 00:49:30 +00:00
Erick Friis
bc636ccc60
cli: release 0.0.35 (#28557) 2024-12-05 16:40:52 -08:00
Erick Friis
7ecf38f4fa
cli: create specific files from template (#28556) 2024-12-06 00:32:47 +00:00
Erick Friis
478def8dcc
core: deprecation doc removal (#28553)
![ScreenShot 2024-12-05 at 02 33
43PM@2x](https://github.com/user-attachments/assets/e1ce495b-90ca-41c7-9a65-b403a934675c)
2024-12-05 15:35:28 -08:00
cinqisap
482e8a7855
community: Add support for SAP HANA Vector hnsw index creation (#27884)
**Issue:** Added support for creating indexes in the SAP HANA Vector
engine.
 
**Changes**: 
1. Introduced a new function `create_hnsw_index` in `hanavector.py` that
enables the creation of indexes for SAP HANA Vector.
2. Added integration tests for the index creation function to ensure
functionality.
3. Updated the documentation to reflect the new index creation feature,
including examples and output from the notebook.
4. Fix the operator issue in ` _process_filter_object` function and
change the array argument to a placeholder in the similarity search SQL
statement.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-05 23:29:08 +00:00
blaufink
28f8d436f6
mistral: fix of issue #26029 (#28233)
- Description: Azure AI takes an issue with the safe_mode parameter
being set to False instead of None. Therefore, this PR changes the
default value of safe_mode from False to None. This results in it being
filtered out before the request is sent - avoind the extra-parameter
issue described below.

- Issue: #26029

- Dependencies: /

---------

Co-authored-by: blaufink <sebastian.brueckner@outlook.de>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-12-05 23:28:12 +00:00
ccurme
ecdfc98ef6
tests[patch]: run standard tests for embeddings and populate embeddings API ref (#28545)
plus minor updates to chat models and vector store API refs
2024-12-05 19:39:03 +00:00
ccurme
b8e861a63b
openai[patch]: add standard tests for embeddings (#28540) 2024-12-05 17:00:27 +00:00
ZhangShenao
d26555c682
[VectorStore] Improvement: Improve chroma vector store (#28524)
- Complete unit test
- Fix spelling error
2024-12-05 11:58:32 -05:00
ccurme
8f9b3b7498
chroma[patch]: fix bug (#28538)
Fix bug introduced in
https://github.com/langchain-ai/langchain/pull/27995

If all document IDs are `""`, the chroma SDK will raise
```
DuplicateIDError: Expected IDs to be unique
```

Caught by [docs
tests](https://github.com/langchain-ai/langchain/actions/runs/12180395579/job/33974633950),
but added a test to langchain-chroma as well.
2024-12-05 15:37:19 +00:00
Erick Friis
ecff9a01e4
cli: release 0.0.34 (#28525) 2024-12-05 15:35:49 +00:00
ccurme
d9e42a1517
langchain[patch]: fix deprecation warning (#28535) 2024-12-05 14:49:10 +00:00
Erick Friis
0f539f0246
standard-tests: release 0.3.5 (#28526) 2024-12-05 00:41:07 -08:00
Erick Friis
43c35d19d4
cli: standard tests in cli, test that they run, skip vectorstore tests (#28521) 2024-12-05 00:38:32 -08:00
Erick Friis
c5acedddc2
anthropic: timeout in tests (10s) (#28488) 2024-12-04 16:03:38 -08:00