Commit Graph

5 Commits

Author SHA1 Message Date
Changyong Um
dc171221b3
community[patch]: Fix vLLM integration to apply lora_request (#27731)
**Description:**
- Add the `lora_request` parameter to the VLLM class to support LoRA
model configurations. This enhancement allows users to specify LoRA
requests directly when using VLLM, enabling more flexible and efficient
model customization.

**Issue:**
- No existing issue for `lora_adapter` in VLLM. This PR addresses the
need for configuring LoRA requests within the VLLM framework.
- Reference : [Using LoRA Adapters in
vLLM](https://docs.vllm.ai/en/stable/models/lora.html#using-lora-adapters)


**Example Code :**
Before this change, the `lora_request` parameter was not applied
correctly:

```python
ADAPTER_PATH = "/path/of/lora_adapter"

llm = VLLM(model="Bllossom/llama-3.2-Korean-Bllossom-3B",
           max_new_tokens=512,
           top_k=2,
           top_p=0.90,
           temperature=0.1,
           vllm_kwargs={
               "gpu_memory_utilization":0.5, 
               "enable_lora":True, 
               "max_model_len":1024,
           }
)

print(llm.invoke(
    ["...prompt_content..."], 
    lora_request=LoRARequest("lora_adapter", 1, ADAPTER_PATH)
    ))
```
**Before Change Output:**
```bash
response was not applied lora_request
```
So, I attempted to apply the lora_adapter to
langchain_community.llms.vllm.VLLM.

**current output:**
```bash
response applied lora_request
```

**Dependencies:**
- None

**Lint and test:**
- All tests and lint checks have passed.

---------

Co-authored-by: Um Changyong <changyong.um@sfa.co.kr>
2024-10-30 13:59:34 +00:00
Enes Bol
3f74dfc3d8
community[patch]: Fix vLLM integration to filter SamplingParams (#27367)
**Description:**
- This pull request addresses a bug in Langchain's VLLM integration,
where the use_beam_search parameter was erroneously passed to
SamplingParams. The SamplingParams class in vLLM does not support the
use_beam_search argument, which caused a TypeError.

- This PR introduces logic to filter out unsupported parameters,
ensuring that only valid parameters are passed to SamplingParams. As a
result, the integration now functions as expected without errors.

- The bug was reproduced by running the code sample from Langchain’s
documentation, which triggered the error due to the invalid parameter.
This fix resolves that error by implementing proper parameter filtering.

**VLLM Sampling Params Class:**
https://github.com/vllm-project/vllm/blob/main/vllm/sampling_params.py

**Issue:**
I could not found an Issue that belongs to this. Fixes "TypeError:
Unexpected keyword argument 'use_beam_search'" error when using VLLM
from Langchain.

**Dependencies:**
None.

**Tests and Documentation**:
Tests:
No new functionality was added, but I tested the changes by running
multiple prompts through the VLLM integration with various parameter
configurations. All tests passed successfully without breaking
compatibility.

Docs
No documentation changes were necessary as this is a bug fix.

**Reproducing the Error:**

https://python.langchain.com/docs/integrations/llms/vllm/

The code sample from the original documentation can be used to reproduce
the error I got.

from langchain_community.llms import VLLM
llm = VLLM(
    model="mosaicml/mpt-7b",
    trust_remote_code=True,  # mandatory for hf models
    max_new_tokens=128,
    top_k=10,
    top_p=0.95,
    temperature=0.8,
)
print(llm.invoke("What is the capital of France ?"))

![image](https://github.com/user-attachments/assets/3782d6ac-1f7b-4acc-bf2c-186216149de5)


This PR resolves the issue by ensuring that only valid parameters are
passed to SamplingParams.
2024-10-15 21:57:50 +00:00
Erick Friis
c2a3021bb0
multiple: pydantic 2 compatibility, v0.3 (#26443)
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com>
Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com>
Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com>
Co-authored-by: ZhangShenao <15201440436@163.com>
Co-authored-by: Friso H. Kingma <fhkingma@gmail.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Nuno Campos <nuno@langchain.dev>
Co-authored-by: Morgante Pell <morgantep@google.com>
2024-09-13 14:38:45 -07:00
Eugene Yurtsev
2c180d645e
core[minor],community[minor]: Upgrade all @root_validator() to @pre_init (#23841)
This PR introduces a @pre_init decorator that's a @root_validator(pre=True) but with all the defaults populated!
2024-07-08 16:09:29 -04:00
Bagatur
ed58eeb9c5
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion:

```
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/retrievers community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/retrievers community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
```

Moved the following to core
```
mv langchain/langchain/utils/json_schema.py core/langchain_core/utils
mv langchain/langchain/utils/html.py core/langchain_core/utils
mv langchain/langchain/utils/strings.py core/langchain_core/utils
cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py
rm langchain/langchain/utils/env.py
```

See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 13:53:30 -08:00