**TL;DR much of the provided `Makefile` targets were broken, and any
time I wanted to preview changes locally I either had to refer to a
command Chester gave me or try waiting on a Vercel preview deployment.
With this PR, everything should behave like normal.**
Significant updates to the `Makefile` and documentation files, focusing
on improving usability, adding clear messaging, and fixing/enhancing
documentation workflows.
### Updates to `Makefile`:
#### Enhanced build and cleaning processes:
- Added informative messages (e.g., "📚 Building LangChain
documentation...") to makefile targets like `docs_build`, `docs_clean`,
and `api_docs_build` for better user feedback during execution.
- Introduced a `clean-cache` target to the `docs` `Makefile` to clear
cached dependencies and ensure clean builds.
#### Improved dependency handling:
- Modified `install-py-deps` to create a `.venv/deps_installed` marker,
preventing redundant/duplicate dependency installations and improving
efficiency.
#### Streamlined file generation and infrastructure setup:
- Added caching for the LangServe README download and parallelized
feature table generation
- Added user-friendly completion messages for targets like `copy-infra`
and `render`.
#### Documentation server updates:
- Enhanced the `start` target with messages indicating server start and
URL for local documentation viewing.
---
### Documentation Improvements:
#### Content clarity and consistency:
- Standardized section titles for consistency across documentation
files.
[[1]](diffhunk://#diff-9b1a85ea8a9dcf79f58246c88692cd7a36316665d7e05a69141cfdc50794c82aL1-R1)
[[2]](diffhunk://#diff-944008ad3a79d8a312183618401fcfa71da0e69c75803eff09b779fc8e03183dL1-R1)
- Refined phrasing and formatting in sections like "Dependency
management" and "Formatting and linting" for better readability.
[[1]](diffhunk://#diff-2069d4f956ab606ae6d51b191439283798adaf3a6648542c409d258131617059L6-R6)
[[2]](diffhunk://#diff-2069d4f956ab606ae6d51b191439283798adaf3a6648542c409d258131617059L84-R82)
#### Enhanced workflows:
- Updated instructions for building and viewing documentation locally,
including tips for specifying server ports and handling API reference
previews.
[[1]](diffhunk://#diff-048deddcfd44b242e5b23aed9f2e9ec73afc672244ce14df2a0a316d95840c87L60-R94)
[[2]](diffhunk://#diff-048deddcfd44b242e5b23aed9f2e9ec73afc672244ce14df2a0a316d95840c87L82-R126)
- Expanded guidance on cleaning documentation artifacts and using
linting tools effectively.
[[1]](diffhunk://#diff-048deddcfd44b242e5b23aed9f2e9ec73afc672244ce14df2a0a316d95840c87L82-R126)
[[2]](diffhunk://#diff-048deddcfd44b242e5b23aed9f2e9ec73afc672244ce14df2a0a316d95840c87L107-R142)
#### API reference documentation:
- Improved instructions for generating and formatting in-code
documentation, highlighting best practices for docstring writing.
[[1]](diffhunk://#diff-048deddcfd44b242e5b23aed9f2e9ec73afc672244ce14df2a0a316d95840c87L107-R142)
[[2]](diffhunk://#diff-048deddcfd44b242e5b23aed9f2e9ec73afc672244ce14df2a0a316d95840c87L144-R186)
---
### Minor Changes:
- Added support for a new package name (`langchain_v1`) in the API
documentation generation script.
- Fixed minor capitalization and formatting issues in documentation
files.
[[1]](diffhunk://#diff-2069d4f956ab606ae6d51b191439283798adaf3a6648542c409d258131617059L40-R40)
[[2]](diffhunk://#diff-2069d4f956ab606ae6d51b191439283798adaf3a6648542c409d258131617059L166-R160)
---------
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
This PR addresses the common issue where users struggle to pass custom
parameters to OpenAI-compatible APIs like LM Studio, vLLM, and others.
The problem occurs when users try to use `model_kwargs` for custom
parameters, which causes API errors.
## Problem
Users attempting to pass custom parameters (like LM Studio's `ttl`
parameter) were getting errors:
```python
# ❌ This approach fails
llm = ChatOpenAI(
base_url="http://localhost:1234/v1",
model="mlx-community/QwQ-32B-4bit",
model_kwargs={"ttl": 5} # Causes TypeError: unexpected keyword argument 'ttl'
)
```
## Solution
The `extra_body` parameter is the correct way to pass custom parameters
to OpenAI-compatible APIs:
```python
# ✅ This approach works correctly
llm = ChatOpenAI(
base_url="http://localhost:1234/v1",
model="mlx-community/QwQ-32B-4bit",
extra_body={"ttl": 5} # Custom parameters go in extra_body
)
```
## Changes Made
1. **Enhanced Documentation**: Updated the `extra_body` parameter
docstring with comprehensive examples for LM Studio, vLLM, and other
providers
2. **Added Documentation Section**: Created a new "OpenAI-compatible
APIs" section in the main class docstring with practical examples
3. **Unit Tests**: Added tests to verify `extra_body` functionality
works correctly:
- `test_extra_body_parameter()`: Verifies custom parameters are included
in request payload
- `test_extra_body_with_model_kwargs()`: Ensures `extra_body` and
`model_kwargs` work together
4. **Clear Guidance**: Documented when to use `extra_body` vs
`model_kwargs`
## Examples Added
**LM Studio with TTL (auto-eviction):**
```python
ChatOpenAI(
base_url="http://localhost:1234/v1",
api_key="lm-studio",
model="mlx-community/QwQ-32B-4bit",
extra_body={"ttl": 300} # Auto-evict after 5 minutes
)
```
**vLLM with custom sampling:**
```python
ChatOpenAI(
base_url="http://localhost:8000/v1",
api_key="EMPTY",
model="meta-llama/Llama-2-7b-chat-hf",
extra_body={
"use_beam_search": True,
"best_of": 4
}
)
```
## Why This Works
- `model_kwargs` parameters are passed directly to the OpenAI client's
`create()` method, causing errors for non-standard parameters
- `extra_body` parameters are included in the HTTP request body, which
is exactly what OpenAI-compatible APIs expect for custom parameters
Fixes#32115.
<!-- START COPILOT CODING AGENT TIPS -->
---
💬 Share your feedback on Copilot coding agent for the chance to win a
$200 gift card! Click
[here](https://survey.alchemer.com/s3/8343779/Copilot-Coding-agent) to
start the survey.
---------
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mdrxy <61371264+mdrxy@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
Trying to unblock documentation build pipeline
* Bump langgraph dep in docs
* Update langgraph in lock file (resolves an issue in API reference
generation)
Follow up to https://github.com/langchain-ai/langsmith-sdk/pull/1696,
I've bumped the `langsmith` version where applicable in `uv.lock`.
Type checking problems here because deps have been updated in
`pyproject.toml` and `uv lock` hasn't been run - we should enforce that
in the future - goes with the other dependabot todos :).
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
community: fix browserbase integration
docs: update docs
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Updated BrowserbaseLoader to use the new python sdk.
- **Issue:** update browserbase integration with langchain
- **Dependencies:** n/a
- **Twitter handle:** @kylejeong21
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
We only need to rebuild model schemas if type annotation information
isn't available during declaration - that shouldn't be the case for
these types corrected here.
Need to do more thorough testing to make sure these structures have
complete schemas, but hopefully this boosts startup / import time.
Generally, this PR is CI performance focused + aims to clean up some
dependencies at the same time.
1. Unpins upper bounds for `numpy` in all `pyproject.toml` files where
`numpy` is specified
2. Requires `numpy >= 2.1.0` for Python 3.13 and `numpy > v1.26.0` for
Python 3.12, plus a `numpy` min version bump for `chroma`
3. Speeds up CI by minutes - linting on Python 3.13, installing `numpy <
2.1.0` was taking [~3
minutes](https://github.com/langchain-ai/langchain/actions/runs/14316342925/job/40123305868?pr=30713),
now the entire env setup takes a few seconds
4. Deleted the `numpy` test dependency from partners where that was not
used, specifically `huggingface`, `voyageai`, `xai`, and `nomic`.
It's a bit unfortunate that `langchain-community` depends on `numpy`, we
might want to try to fix that in the future...
Closes https://github.com/langchain-ai/langchain/issues/26026
Fixes https://github.com/langchain-ai/langchain/issues/30555
Plus, some accompanying docs updates
Some compelling usage:
```py
from langchain_perplexity import ChatPerplexity
chat = ChatPerplexity(model="llama-3.1-sonar-small-128k-online")
response = chat.invoke(
"What were the most significant newsworthy events that occurred in the US recently?",
extra_body={"search_recency_filter": "week"},
)
print(response.content)
# > Here are the top significant newsworthy events in the US recently: ...
```
Also, some confirmation of structured outputs:
```py
from langchain_perplexity import ChatPerplexity
from pydantic import BaseModel
class AnswerFormat(BaseModel):
first_name: str
last_name: str
year_of_birth: int
num_seasons_in_nba: int
messages = [
{"role": "system", "content": "Be precise and concise."},
{
"role": "user",
"content": (
"Tell me about Michael Jordan. "
"Please output a JSON object containing the following fields: "
"first_name, last_name, year_of_birth, num_seasons_in_nba. "
),
},
]
llm = ChatPerplexity(model="llama-3.1-sonar-small-128k-online")
structured_llm = llm.with_structured_output(AnswerFormat)
response = structured_llm.invoke(messages)
print(repr(response))
#> AnswerFormat(first_name='Michael', last_name='Jordan', year_of_birth=1963, num_seasons_in_nba=15)
```
Perplexity's importance in the space has been growing, so we think it's
time to add an official integration!
Note: following the release of `langchain-perplexity` to `pypi`, we
should be able to add `perplexity` as an extra in
`libs/langchain/pyproject.toml`, but we're blocked by a circular import
for now.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
## Changes
- `/Makefile` - added extra step to `make format` and `make lint` to
ensure the lint dep-group is installed before running ruff (documented
in issue #30069)
- `/pyproject.toml` - removed ruff exceptions for files that no longer
exist or no longer create formatting/linting errors in ruff
## Testing
**running `make format` on this branch/PR**
<img width="435" alt="image"
src="https://github.com/user-attachments/assets/82751788-f44e-4591-98ed-95ce893ce623"
/>
## Issue
fixes#30069
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>