Commit Graph

1634 Commits

Author SHA1 Message Date
frob
c59e663365 community[patch]: Fix docstring for ollama parameter "keep_alive" (#23973)
Fix doc-string for ollama integration
2024-07-16 14:48:38 +00:00
Rahul Raghavendra Choudhury
f5a38772a8 community[patch]: Update TavilySearch to use TavilyClient instead of the deprecated Client (#24270)
On using TavilySearchAPIRetriever with any conversation chain getting
error :

`TypeError: Client.__init__() got an unexpected keyword argument
'api_key'`

It is because the retreiver class is using the depreciated `Client`
class, `TavilyClient` need to be used instead.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-07-16 13:35:28 +00:00
Chen Xiabin
69b1603173 baidu qianfan AiMessage with usage_metadata (#24288)
add usage_metadata to qianfan AIMessage. Thanks
2024-07-16 09:30:50 -04:00
Dobiichi-Origami
7aeaa1974d community[patch]: change the class of qianfan_ak and qianfan_sk parameters (#24293)
- **Description:** we changed the class of two parameters to fix a bug,
which causes validation failure when using QianfanEmbeddingEndpoint
2024-07-16 09:17:48 -04:00
Lage Ragnarsson
a3c10fc6ce community: Add support for specifying hybrid search for Databricks vector search (#23528)
**Description:**

Databricks Vector Search recently added support for hybrid
keyword-similarity search.
See [usage
examples](https://docs.databricks.com/en/generative-ai/create-query-vector-search.html#query-a-vector-search-endpoint)
from their documentation.

This PR updates the Langchain vectorstore interface for Databricks to
enable the user to pass the *query_type* parameter to
*similarity_search* to make use of this functionality.
By default, there will not be any changes for existing users of this
interface. To use the new hybrid search feature, it is now possible to
do

```python
# ...
dvs = DatabricksVectorSearch(index)
dvs.similarity_search("my search query", query_type="HYBRID")
```

Or using the retriever:

```python
retriever = dvs.as_retriever(
    search_kwargs={
        "query_type": "HYBRID",
    }
)
retriever.invoke("my search query")
```

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-15 22:14:08 +00:00
Christopher Tee
5171ffc026 community(you): Integrate You.com conversational APIs (#23046)
You.com is releasing two new conversational APIs — Smart and Research. 

This PR:
- integrates those APIs with Langchain, as an LLM
- streaming is supported

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-15 17:46:58 -04:00
maang-h
6c7d9f93b9 feat: Add ChatTongyi structured output (#24187)
- **Description:** Add `with_structured_output` method to ChatTongyi to
support structured output.
2024-07-15 15:57:21 -04:00
Chen Xiabin
8f4620f4b8 baidu qianfan streaming token_usage (#24117)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-15 19:52:31 +00:00
maang-h
9d97de34ae community[patch]: Improve ChatBaichuan init args and role (#23878)
- **Description:** Improve ChatBaichuan init args and role
   -  ChatBaichuan adds `system` role
   - alias: `baichuan_api_base` -> `base_url`
   - `with_search_enhance` is deprecated
   - Add `max_tokens` argument
2024-07-15 15:17:00 -04:00
mrugank-wadekar
66bebeb76a partners: add similarity search by image functionality to langchain_chroma partner package (#22982)
- **Description:** This pull request introduces two new methods to the
Langchain Chroma partner package that enable similarity search based on
image embeddings. These methods enhance the package's functionality by
allowing users to search for images similar to a given image URI. Also
introduces a notebook to demonstrate it's use.
  - **Issue:** N/A
  - **Dependencies:** None
  - **Twitter handle:** @mrugank9009

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-15 18:48:22 +00:00
Carlos André Antunes
20151384d7 fix azure_openai.py: some keys do not exists (#24158)
In some lines its trying to read a key that do not exists yet. In this
cases I changed the direct access to dict.get() method

Thank you for contributing to LangChain!

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2024-07-15 17:17:05 +00:00
Harold Martin
ccdaf14eff docs: Spell check fixes (#24217)
**Description:** Spell check fixes for docs, comments, and a couple of
strings. No code change e.g. variable names.
**Issue:** none
**Dependencies:** none
**Twitter handle:** hmartin
2024-07-15 15:51:43 +00:00
thehunmonkgroup
e8a21146d3 community[patch]: upgrade default model for ChatAnyscale (#24232)
Old default `meta-llama/Llama-2-7b-chat-hf` no longer supported.
2024-07-15 11:34:59 -04:00
Bagatur
65321bf975 core[patch]: fix ToolCall "type" when streaming (#24218) 2024-07-13 08:59:03 -07:00
Miroslav
aee55eda39 community: Skip Login to HuggubgFaceHub when token is not set (#21561)
Thank you for contributing to LangChain!

- [ ] **HuggingFaceEndpoint**: "Skip Login to HuggingFaceHub"
  - Where:  langchain, community, llm, huggingface_endpoint
 


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Skip login to huggingface hub when when
`huggingfacehub_api_token` is not set. This is needed when using custom
`endpoint_url` outside of HuggingFaceHub.
- **Issue:** the issue # it fixes
https://github.com/langchain-ai/langchain/issues/20342 and
https://github.com/langchain-ai/langchain/issues/19685
    - **Dependencies:** None


- [ ] **Add tests and docs**: 
  1. Tested with locally available TGI endpoint
  2.  Example Usage
```python
from langchain_community.llms import HuggingFaceEndpoint

llm = HuggingFaceEndpoint(
    endpoint_url='http://localhost:8080',
    server_kwargs={
        "headers": {"Content-Type": "application/json"}
    }
)
resp = llm.invoke("Tell me a joke")
print(resp)
```
 Also tested against HF Endpoints
 ```python
 from langchain_community.llms import HuggingFaceEndpoint
huggingfacehub_api_token = "hf_xyz"
repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
llm = HuggingFaceEndpoint(
    huggingfacehub_api_token=huggingfacehub_api_token,
    repo_id=repo_id,
)
resp = llm.invoke("Tell me a joke")
print(resp)
 ```
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 22:10:32 +00:00
Jean Nshuti
d77d9bfc00 community[patch]: update typo document content returned from semanticscholar (#24175)
Update "astract" -> abstract
2024-07-12 15:40:47 +00:00
Tomaz Bratanic
d3a2b9fae0 Fix neo4j type error on missing constraint information (#24177)
If you use `refresh_schema=False`, then the metadata constraint doesn't
exist. ATM, we used default `None` in the constraint check, but then
`any` fails because it can't iterate over None value
2024-07-12 06:39:29 -04:00
thedavgar
ffe6ca986e community: Fix Bug in Azure Search Vectorstore search asyncronously (#24081)
Thank you for contributing to LangChain!

**Description**:
This PR fixes a bug described in the issue in #24064, when using the
AzureSearch Vectorstore with the asyncronous methods to do search which
is also the method used for the retriever. The proposed change includes
just change the access of the embedding as optional because is it not
used anywhere to retrieve documents. Actually, the syncronous methods of
retrieval do not use the embedding neither.

With this PR the code given by the user in the issue works.

```python
vectorstore = AzureSearch(
    azure_search_endpoint=os.getenv("AI_SEARCH_ENDPOINT_SECRET"),
    azure_search_key=os.getenv("AI_SEARCH_API_KEY"),
    index_name=os.getenv("AI_SEARCH_INDEX_NAME_SECRET"),
    fields=fields,
    embedding_function=encoder,
)

retriever = vectorstore.as_retriever(search_type="hybrid", k=2)

await vectorstore.avector_search("what is the capital of France")
await retriever.ainvoke("what is the capital of France")
```

**Issue**:
The Azure Search Vectorstore is not working when searching for documents
with asyncronous methods, as described in issue #24064

**Dependencies**:
There are no extra dependencies required for this change.

---------

Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
2024-07-11 18:32:19 -07:00
Jacob Lee
f1f1f75782 community[patch]: Make AzureML endpoint return AI messages for type assistant (#24085) 2024-07-11 21:45:30 +02:00
Atul R
457677c1b7 community: Fixes use of ImagePromptTemplate with Ollama (#24140)
Description: ImagePromptTemplate for Multimodal llms like llava when
using Ollama
Twitter handle: https://x.com/a7ulr

Details:

When using llava models / any ollama multimodal llms and passing images
in the prompt as urls, langchain breaks with this error.

```python
image_url_components = image_url.split(",")
                           ^^^^^^^^^^^^^^^^^^^^
AttributeError: 'dict' object has no attribute 'split'
```

From the looks of it, there was bug where the condition did check for a
`url` field in the variable but missed to actually assign it.

This PR fixes ImagePromptTemplate for Multimodal llms like llava when
using Ollama specifically.

@hwchase17
2024-07-11 11:31:48 -07:00
Matt
8327925ab7 community:support additional Azure Search Options (#24134)
- **Description:** Support additional kwargs options for the Azure
Search client (Described here
https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/core/azure-core/README.md#configurations)
    - **Issue:** N/A
    - **Dependencies:** No additional Dependencies

---------
2024-07-11 18:22:36 +00:00
Eugene Yurtsev
08638ccc88 community[patch]: QianfanLLMEndpoint fix type information for the keys (#24128)
Fix for issue: https://github.com/langchain-ai/langchain/issues/24126
2024-07-11 16:24:26 +00:00
maang-h
16e178a8c2 docs: Add MiniMaxChat docstrings (#24026)
- **Description:** Add MiniMaxChat rich docstrings.
- **Issue:** the issue #22296
2024-07-11 10:55:02 -04:00
Christophe Bornet
5fc5ef2b52 community[minor]: Add graph store extractors (#24065)
This adds an extractor interface and an implementation for HTML pages.
Extractors are used to create GraphVectorStore Links on loaded content.

**Twitter handle:** cbornet_
2024-07-11 10:35:31 -04:00
maang-h
9bcf8f867d docs: Add SQLChatMessageHistory docstring (#23978)
- **Description:** Add SQLChatMessageHistory docstring.
- **Issue:** the issue #21983

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-11 14:24:28 +00:00
Rafael Pereira
092e9ee0e6 community[minor]: Neo4j Fixed similarity docs (#23913)
**Description:** There was missing some documentation regarding the
`filter` and `params` attributes in similarity search methods.

---------

Co-authored-by: rpereira <rafael.pereira@criticalsoftware.com>
2024-07-11 10:16:48 -04:00
ccurme
975b6129f6 core[patch]: support conversion of runnables to tools (#23992)
Open to other thoughts on UX.

string input:
```python
as_tool = retriever.as_tool()
as_tool.invoke("cat")  # [Document(...), ...]
```

typed dict input:
```python
class Args(TypedDict):
    key: int

def f(x: Args) -> str:
    return str(x["key"] * 2)

as_tool = RunnableLambda(f).as_tool(
    name="my tool",
    description="description",  # name, description are inferred if not supplied
)
as_tool.invoke({"key": 3})  # "6"
```

for untyped dict input, allow specification of parameters + types
```python
def g(x: Dict[str, Any]) -> str:
    return str(x["key"] * 2)

as_tool = RunnableLambda(g).as_tool(arg_types={"key": int})
result = as_tool.invoke({"key": 3})  # "6"
```

Passing the `arg_types` is slightly awkward but necessary to ensure tool
calls populate parameters correctly:
```python
from typing import Any, Dict

from langchain_core.runnables import RunnableLambda
from langchain_openai import ChatOpenAI


def f(x: Dict[str, Any]) -> str:
    return str(x["key"] * 2)

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"key": int})

llm = ChatOpenAI().bind_tools([as_tool])

result = llm.invoke("Use the tool on 3.")
tool_call = result.tool_calls[0]
args = tool_call["args"]
assert args == {"key": 3}

as_tool.run(args)
```

Contrived (?) example with langgraph agent as a tool:
```python
from typing import List, Literal
from typing_extensions import TypedDict

from langchain_openai import ChatOpenAI
from langgraph.prebuilt import create_react_agent


llm = ChatOpenAI(temperature=0)


def magic_function(input: int) -> int:
    """Applies a magic function to an input."""
    return input + 2


agent_1 = create_react_agent(llm, [magic_function])


class Message(TypedDict):
    role: Literal["human"]
    content: str

agent_tool = agent_1.as_tool(
    arg_types={"messages": List[Message]},
    name="Jeeves",
    description="Ask Jeeves.",
)

agent_2 = create_react_agent(llm, [agent_tool])
```

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-10 19:29:59 -04:00
Eugene Yurtsev
c4e149d4f1 community[patch]: Add linter to catch @root_validator (#24070)
- Add linter to prevent further usage of vanilla root validator
- Udpate remaining root validators
2024-07-10 14:51:03 +00:00
ccurme
9c6efadec3 community[patch]: propagate cost information to OpenAI callback (#23996)
This is enabled following
https://github.com/langchain-ai/langchain/pull/22716.
2024-07-10 14:50:35 +00:00
Ethan Yang
13855ef0c3 [HuggingFace Pipeline] add streaming support (#23852) 2024-07-09 17:02:00 -04:00
Eugene Yurtsev
f765e8fa9d core[minor],community[patch],standard-tests[patch]: Move InMemoryImplementation to langchain-core (#23986)
This PR moves the in memory implementation to langchain-core.

* The implementation remains importable from langchain-community.
* Supporting utilities are marked as private for now.
2024-07-08 14:11:51 -07:00
Eugene Yurtsev
2c180d645e core[minor],community[minor]: Upgrade all @root_validator() to @pre_init (#23841)
This PR introduces a @pre_init decorator that's a @root_validator(pre=True) but with all the defaults populated!
2024-07-08 16:09:29 -04:00
Rajendra Kadam
8b84457b17 community[minor]: Support PGVector in PebbloRetrievalQA (#23874)
- **Description:** Support PGVector in PebbloRetrievalQA
  - Identity and Semantic Enforcement support for PGVector
  - Refactor Vectorstore validation and name check
  - Clear the overridden identity and semantic enforcement filters
- **Issue:** NA
- **Dependencies:** NA
- **Tests**: NA(already added)
-  **Docs**: Updated
- **Twitter handle:** [@Raj__725](https://twitter.com/Raj__725)
2024-07-05 16:02:25 -04:00
Rajendra Kadam
ee8aa54f53 community[patch]: Fix source path mismatch in PebbloSafeLoader (#23857)
**Description:** Fix for source path mismatch in PebbloSafeLoader. The
fix involves storing the full path in the doc metadata in VectorDB
**Issue:** NA, caught in internal testing
**Dependencies:** NA
**Add tests**:  Updated tests
2024-07-05 15:24:17 -04:00
Christophe Bornet
42d049f618 core[minor]: Add Graph Store component (#23092)
This PR introduces a GraphStore component. GraphStore extends
VectorStore with the concept of links between documents based on
document metadata. This allows linking documents based on a variety of
techniques, including common keywords, explicit links in the content,
and other patterns.

This works with existing Documents, so it’s easy to extend existing
VectorStores to be used as GraphStores. The interface can be implemented
for any Vector Store technology that supports metadata, not only graph
DBs.

When retrieving documents for a given query, the first level of search
is done using classical similarity search. Next, links may be followed
using various traversal strategies to get additional documents. This
allows documents to be retrieved that aren’t directly similar to the
query but contain relevant information.

2 retrieving methods are added to the VectorStore ones : 
* traversal_search which gets all linked documents up to a certain depth
* mmr_traversal_search which selects linked documents using an MMR
algorithm to have more diverse results.

If a depth of retrieval of 0 is used, GraphStore is effectively a
VectorStore. It enables an easy transition from a simple VectorStore to
GraphStore by adding links between documents as a second step.

An implementation for Apache Cassandra is also proposed.

See
https://github.com/datastax/ragstack-ai/blob/main/libs/knowledge-store/notebooks/astra_support.ipynb
for a notebook explaining how to use GraphStore and that shows that it
can answer correctly to questions that a simple VectorStore cannot.

**Twitter handle:** _cbornet
2024-07-05 12:24:10 -04:00
Eugene Yurtsev
6f08e11d7c core[minor]: add upsert, streaming_upsert, aupsert, astreaming_upsert methods to the VectorStore abstraction (#23774)
This PR rolls out part of the new proposed interface for vectorstores
(https://github.com/langchain-ai/langchain/pull/23544) to existing store
implementations.

The PR makes the following changes:

1. Adds standard upsert, streaming_upsert, aupsert, astreaming_upsert
methods to the vectorstore.
2. Updates `add_texts` and `aadd_texts` to be non required with a
default implementation that delegates to `upsert` and `aupsert` if those
have been implemented. The original `add_texts` and `aadd_texts` methods
are problematic as they spread object specific information across
document and **kwargs. (e.g., ids are not a part of the document)
3. Adds a default implementation to `add_documents` and `aadd_documents`
that delegates to `upsert` and `aupsert` respectively.
4. Adds standard unit tests to verify that a given vectorstore
implements a correct read/write API.

A downside of this implementation is that it creates `upsert` with a
very similar signature to `add_documents`.
The reason for introducing `upsert` is to:
* Remove any ambiguities about what information is allowed in `kwargs`.
Specifically kwargs should only be used for information common to all
indexed data. (e.g., indexing timeout).
*Allow inheriting from an anticipated generalized interface for indexing
that will allow indexing `BaseMedia` (i.e., allow making a vectorstore
for images/audio etc.)
 
`add_documents` can be deprecated in the future in favor of `upsert` to
make sure that users have a single correct way of indexing content.

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-05 12:21:40 -04:00
Philippe PRADOS
289960bc60 community[patch]: Redis.delete should be a regular method not a static method (#23873)
The `langchain_common.vectostore.Redis.delete()` must not be a
`@staticmethod`.

With the current implementation, it's not possible to have multiple
instances of Redis vectorstore because all versions must share the
`REDIS_URL`.

It's not conform with the base class.
2024-07-05 12:04:58 -04:00
Klaudia Lemiec
a2082bc1f8 docs: Arxiv docs update (#23871)
- [X] **PR title**
- [X] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** Update of docstrings and docpages
- **Issue:**
[22866](https://github.com/langchain-ai/langchain/issues/22866)

- [X] **Add tests and docs**

- [X] **Lint and test**
2024-07-05 11:43:51 -04:00
André Quintino
99b1467b63 community: add support for 'cloud' parameter in JiraAPIWrapper (#23057)
- **Description:** Enhance JiraAPIWrapper to accept the 'cloud'
parameter through an environment variable. This update allows more
flexibility in configuring the environment for the Jira API.
 - **Twitter handle:** Andre_Q_Pereira

---------

Co-authored-by: André Quintino <andre.quintino@tui.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-05 15:11:10 +00:00
wenngong
b1e90b3075 community: add model_name param valid for GPT4AllEmbeddings (#23867)
Description: add model_name param valid for GPT4AllEmbeddings

Issue: #23863 #22819

---------

Co-authored-by: gongwn1 <gongwn1@lenovo.com>
2024-07-05 10:46:34 -04:00
volodymyr-memsql
a4eb6d0fb1 community: add SingleStoreDB semantic cache (#23218)
This PR adds a `SingleStoreDBSemanticCache` class that implements a
cache based on SingleStoreDB vector store, integration tests, and a
notebook example.

Additionally, this PR contains minor changes to SingleStoreDB vector
store:
 - change add texts/documents methods to return a list of inserted ids
 - implement delete(ids) method to delete documents by list of ids
 - added drop() method to drop a correspondent database table
- updated integration tests to use and check functionality implemented
above


CC: @baskaryan, @hwchase17

---------

Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
2024-07-05 09:26:06 -04:00
Igor Drozdov
bb597b1286 feat(community): add bind_tools function for ChatLiteLLM (#23823)
It's a follow-up to https://github.com/langchain-ai/langchain/pull/23765

Now the tools can be bound by calling `bind_tools`

```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_community.chat_models import ChatLiteLLM

class GetWeather(BaseModel):
    '''Get the current weather in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

class GetPopulation(BaseModel):
    '''Get the current population in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

prompt = "Which city is hotter today and which is bigger: LA or NY?"
# tools = [convert_to_openai_tool(GetWeather), convert_to_openai_tool(GetPopulation)]
tools = [GetWeather, GetPopulation]

llm = ChatLiteLLM(model="claude-3-sonnet-20240229").bind_tools(tools)
ai_msg = llm.invoke(prompt)
print(ai_msg.tool_calls)
```

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

Co-authored-by: Igor Drozdov <idrozdov@gitlab.com>
2024-07-05 09:19:41 -04:00
Jiejun Tan
2be66a38d8 huggingface: Fix huggingface tei support (#22653)
Update former pull request:
https://github.com/langchain-ai/langchain/pull/22595.

Modified
`libs/partners/huggingface/langchain_huggingface/embeddings/huggingface_endpoint.py`,
where the API call function does not match current [Text Embeddings
Inference
API](https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/embed).
One example is:
```json
{
  "inputs": "string",
  "normalize": true,
  "truncate": false
}
```
Parameters in `_model_kwargs` are not passed properly in the latest
version. By the way, the issue *[why cause 413?
#50](https://github.com/huggingface/text-embeddings-inference/issues/50)*
might be solved.
2024-07-03 13:30:29 -07:00
Bagatur
a0c2281540 infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00
Oguz Vuruskaner
2a2c0d1a94 community[deepinfra]: fix tool call parsing. (#23162)
This PR includes fix for DeepInfra tool call parsing.
2024-07-03 12:11:37 -04:00
maang-h
525109e506 feat: Implement ChatBaichuan asynchronous interface (#23589)
- **Description:** Add interface to `ChatBaichuan` to support
asynchronous requests
    - `_agenerate` method
    - `_astream` method

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-03 12:10:04 -04:00
Qingchuan Hao
5cd4083457 community: make bing web search as the only option (#23523)
This PR make bing web search as the option for BingSearchAPIWrapper to
facilitate and simply the user interface on Langchain.
This is a follow-up work of
https://github.com/langchain-ai/langchain/pull/23306.
2024-07-02 17:13:54 -04:00
maang-h
e4e28a6ff5 community[patch]: Fix MiniMaxChat validate_environment error (#23770)
- **Description:** Fix some issues in MiniMaxChat 
  - Fix `minimax_api_host` not in `values` error
- Remove `minimax_group_id` from reading environment variables, the
`minimax_group_id` no longer use in MiniMaxChat
  - Invoke callback prior to yielding token, the issus #16913
2024-07-02 13:23:32 -04:00
Eugene Yurtsev
46ff0f7a3c community[patch]: Update @root_validators to use explicit pre=True or pre=False (#23737) 2024-07-02 10:47:21 -04:00
Igor Drozdov
b664dbcc36 feat(community): add support for tool_calls response (#23765)
When `model_kwargs={"tools": tools}` are passed to `ChatLiteLLM`, they
are executed, but the response is not recognized correctly

Let's add `tool_calls` to the `additional_kwargs`

Thank you for contributing to LangChain!

## ChatAnthropic

I used the following example to verify the output of llm with tools:

```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_anthropic import ChatAnthropic

class GetWeather(BaseModel):
    '''Get the current weather in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

class GetPopulation(BaseModel):
    '''Get the current population in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

llm = ChatAnthropic(model="claude-3-sonnet-20240229")
llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
ai_msg = llm_with_tools.invoke("Which city is hotter today and which is bigger: LA or NY?")
print(ai_msg.tool_calls)
```

I get the following response:

```json
[{'name': 'GetWeather', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_01UfDA89knrhw3vFV9X47neT'}, {'name': 'GetWeather', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01NrYVRYae7m7z7tBgyPb3Gd'}, {'name': 'GetPopulation', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_01EPFEpDgzL6vV2dTpD9SVP5'}, {'name': 'GetPopulation', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01B5J6tPJXgwwfhQX9BHP2dt'}]
```

## LiteLLM

Based on https://litellm.vercel.app/docs/completion/function_call

```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.utils.function_calling import convert_to_openai_tool
import litellm

class GetWeather(BaseModel):
    '''Get the current weather in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

class GetPopulation(BaseModel):
    '''Get the current population in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

prompt = "Which city is hotter today and which is bigger: LA or NY?"
tools = [convert_to_openai_tool(GetWeather), convert_to_openai_tool(GetPopulation)]

response = litellm.completion(model="claude-3-sonnet-20240229", messages=[{'role': 'user', 'content': prompt}], tools=tools)
print(response.choices[0].message.tool_calls)
```

```python
[ChatCompletionMessageToolCall(function=Function(arguments='{"location": "Los Angeles, CA"}', name='GetWeather'), id='toolu_01HeDWV5vP7BDFfytH5FJsja', type='function'), ChatCompletionMessageToolCall(function=Function(arguments='{"location": "New York, NY"}', name='GetWeather'), id='toolu_01EiLesUSEr3YK1DaE2jxsQv', type='function'), ChatCompletionMessageToolCall(function=Function(arguments='{"location": "Los Angeles, CA"}', name='GetPopulation'), id='toolu_01Xz26zvkBDRxEUEWm9pX6xa', type='function'), ChatCompletionMessageToolCall(function=Function(arguments='{"location": "New York, NY"}', name='GetPopulation'), id='toolu_01SDqKnsLjvUXuBsgAZdEEpp', type='function')]
```

## ChatLiteLLM

When I try the following

```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_community.chat_models import ChatLiteLLM

class GetWeather(BaseModel):
    '''Get the current weather in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

class GetPopulation(BaseModel):
    '''Get the current population in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

prompt = "Which city is hotter today and which is bigger: LA or NY?"
tools = [convert_to_openai_tool(GetWeather), convert_to_openai_tool(GetPopulation)]

llm = ChatLiteLLM(model="claude-3-sonnet-20240229", model_kwargs={"tools": tools})
ai_msg = llm.invoke(prompt)
print(ai_msg)
print(ai_msg.tool_calls)
```

```python
content="Okay, let's find out the current weather and populations for Los Angeles and New York City:" response_metadata={'token_usage': Usage(prompt_tokens=329, completion_tokens=193, total_tokens=522), 'model': 'claude-3-sonnet-20240229', 'finish_reason': 'tool_calls'} id='run-748b7a84-84f4-497e-bba1-320bd4823937-0'
[]
```

---

When I apply the changes of this PR, the output is

```json
[{'name': 'GetWeather', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_017D2tGjiaiakB1HadsEFZ4e'}, {'name': 'GetWeather', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01WrDpJfVqLkPejWzonPCbLW'}, {'name': 'GetPopulation', 'args': {'location': 'Los Angeles, CA'}, 'id': 'toolu_016UKyYrVAV9Pz99iZGgGU7V'}, {'name': 'GetPopulation', 'args': {'location': 'New York, NY'}, 'id': 'toolu_01Sgv1imExFX1oiR1Cw88zKy'}]
```

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

Co-authored-by: Igor Drozdov <idrozdov@gitlab.com>
2024-07-02 10:42:08 -04:00