**Description**:
Adds a vector store integration with
[sqlite-vec](https://alexgarcia.xyz/sqlite-vec/), the successor to
sqlite-vss that is a single C file with no external dependencies.
Pretty straightforward, just copy-pasted the sqlite-vss integration and
made a few tweaks and added integration tests. Only question is whether
all documentation should be directed away from sqlite-vss if it is
defacto deprecated (cc @asg017).
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: philippe-oger <philippe.oger@adevinta.com>
- **Description:** This pull request addresses the validation error in
`SettingsConfigDict` due to extra fields in the `.env` file. The issue
is prevalent across multiple Langchain modules. This fix ensures that
extra fields in the `.env` file are ignored, preventing validation
errors.
**Changes include:**
- Applied fixes to modules using `SettingsConfigDict`.
- **Issue:** NA, similar
https://github.com/langchain-ai/langchain/issues/26850
- **Dependencies:** NA
# Description
[Vector store base
class](4cdaca67dc/libs/core/langchain_core/vectorstores/base.py (L65))
currently expects `ids` to be passed in and that is what it passes along
to the AzureSearch vector store when attempting to `add_texts()`.
However AzureSearch expects `keys` to be passed in. When they are not
present, AzureSearch `add_embeddings()` makes up new uuids. This is a
problem when trying to run indexing. [Indexing code
expects](b297af5482/libs/core/langchain_core/indexing/api.py (L371))
the documents to be uploaded using provided ids. Currently AzureSearch
ignores `ids` passed from `indexing` and makes up new ones. Later when
`indexer` attempts to delete removed file, it uses the `id` it had
stored when uploading the document, however it was uploaded under
different `id`.
**Twitter handle: @martintriska1**
**Description:**
Starting from Neo4j 5.23 (22 August 2024), with vector-2.0 indexes,
`vector.dimensions` is not required to be set, which will cause it the
key not exist error in index config if it's not set.
Since the existence of vector.dimensions will only ensure additional
checks, this commit turns embedding dimension check optional, and only
do checks when it exists (not None).
https://neo4j.com/release-notes/database/neo4j-5/
**Twitter handle:** @HollowM186
Signed-off-by: Hollow Man <hollowman@opensuse.org>
Co-authored-by: Erick Friis <erick@langchain.dev>
Added Azure Search Access Token Authentication instead of API KEY auth.
Fixes Issue: https://github.com/langchain-ai/langchain/issues/24263
Dependencies: None
Twitter: @levalencia
@baskaryan
Could you please review? First time creating a PR that fixes some code.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR introduces adjustments to ensure compatibility with the recently
released preview version of [TiDB Serverless Vector
Search](https://tidb.cloud/ai), aiming to prevent user confusion.
- TiDB Vector now supports vector indexing with cosine and l2 distance
strategies, although inner_product remains unsupported.
- Changing the distance strategy is currently not supported, so the test
cased should be adjusted.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
Description: Simply pass kwargs to allow arguments like "where" to be
propagated
Issue: Previously, db.delete(where={}) wouldn't work for chroma
vectorstores
Dependencies: N/A
Twitter handle: N/A
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Description: Send both the query and query_embedding to the Databricks
index for hybrid search.
Issue: When using hybrid search with non-Databricks managed embedding we
currently don't pass both the embedding and query_text to the index.
Hybrid search requires both of these. This change fixes this issue for
both `similarity_search` and `similarity_search_by_vector`.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Description: The neo4j driver can raise a SessionExpired error, which is
considered a retriable error. If a query fails with a SessionExpired
error, this change retries every query once. This change will make the
neo4j integration less flaky.
Twitter handle: noahmay_
This will allow complextype metadata to be returned. the current
implementation throws error when dealing with nested metadata
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
**Description**
Fix the asyncronous methods to retrieve documents from AzureSearch
VectorStore. The previous changes from [this
commit](ffe6ca986e)
create a similar code for the syncronous methods and the asyncronous
ones but the asyncronous client return an asyncronous iterator
"AsyncSearchItemPaged" as said in the issue #24740.
To solve this issue, the syncronous iterators in asyncronous methods
where changed to asyncronous iterators.
@chrislrobert said in [this
comment](https://github.com/langchain-ai/langchain/issues/24740#issuecomment-2254168302)
that there was a still a flaw due to `with` blocks that close the client
after each call. I removed this `with` blocks in the `async_client`
following the same pattern as the sync `client`.
In order to close up the connections, a __del__ method is included to
gently close up clients once the vectorstore object is destroyed.
**Issue:** #24740 and #24064
**Dependencies:** No new dependencies for this change
**Example notebook:** I created a notebook just to test the changes work
and gives the same results as the syncronous methods for vector and
hybrid search. With these changes, the asyncronous methods in the
retriever work as well.

**Lint and test**: Passes the tests and the linter
This PR deprecates the beta upsert APIs in vectorstore.
We'll introduce them in a V2 abstraction instead to keep the existing
vectorstore implementations lighter weight.
The main problem with the existing APIs is that it's a bit more
challenging to
implement the correct behavior w/ respect to IDs since ID can be present
in
both the function signature and as an optional attribute on the document
object.
But VectorStores that pass the standard tests should have implemented
the semantics properly!
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [X] **PR title**: "community: fix valueerror mentions wrong argument
missing"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [X] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** when faiss.py has a None relevance_score_fn it raises
a ValueError that says a normalize_fn_score argument is needed.
Co-authored-by: ccurme <chester.curme@gmail.com>
Change all usages of __fields__ with get_fields adapter merged into
langchain_core.
Code mod generated using the following grit pattern:
```
engine marzano(0.1)
language python
`$X.__fields__` => `get_fields($X)` where {
add_import(source="langchain_core.utils.pydantic", name="get_fields")
}
```
Upgrade to using a literal for specifying the extra which is the
recommended approach in pydantic 2.
This works correctly also in pydantic v1.
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel, extra="forbid"):
x: int
Foo(x=5, y=1)
```
And
```python
from pydantic.v1 import BaseModel
class Foo(BaseModel):
x: int
class Config:
extra = "forbid"
Foo(x=5, y=1)
```
## Enum -> literal using grit pattern:
```
engine marzano(0.1)
language python
or {
`extra=Extra.allow` => `extra="allow"`,
`extra=Extra.forbid` => `extra="forbid"`,
`extra=Extra.ignore` => `extra="ignore"`
}
```
Resorted attributes in config and removed doc-string in case we will
need to deal with going back and forth between pydantic v1 and v2 during
the 0.3 release. (This will reduce merge conflicts.)
## Sort attributes in Config:
```
engine marzano(0.1)
language python
function sort($values) js {
return $values.text.split(',').sort().join("\n");
}
class_definition($name, $body) as $C where {
$name <: `Config`,
$body <: block($statements),
$values = [],
$statements <: some bubble($values) assignment() as $A where {
$values += $A
},
$body => sort($values),
}
```
Fixes Neo4JVector.from_existing_graph integration with huggingface
Previously threw an error with existing databases, because
from_existing_graph query returns empty list of new nodes, which are
then passed to embedding function, and huggingface errors with empty
list.
Fixes [24401](https://github.com/langchain-ai/langchain/issues/24401)
---------
Co-authored-by: Jeff Katzy <jeffreyerickatz@gmail.com>
This PR adds annotations in comunity package.
Annotations are only strictly needed in subclasses of BaseModel for
pydantic 2 compatibility.
This PR adds some unnecessary annotations, but they're not bad to have
regardless for documentation pages.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
**Description**
Fixes DocumentDBVectorSearch similarity_search when no filter is used;
it defaults to None but $match does not accept None, so changed default
to empty {} before pipeline is created.
**Issue**
AWS DocumentDB similarity search does not work when no filter is used.
Error msg: "the match filter must be an expression in an object" #24775
**Dependencies**
No dependencies
**Twitter handle**
https://x.com/perepasamonte
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Raise `LangChainException` instead of `Exception`. This alleviates the
need for library users to use bare try/except to handle exceptions
raised by `AzureSearch`.
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Description:
- This PR adds a self query retriever implementation for SAP HANA Cloud
Vector Engine. The retriever supports all operators except for contains.
- Issue: N/A
- Dependencies: no new dependencies added
**Add tests and docs:**
Added integration tests to:
libs/community/tests/unit_tests/query_constructors/test_hanavector.py
**Documentation for self query retriever:**
/docs/integrations/retrievers/self_query/hanavector_self_query.ipynb
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:**
- This PR exposes some functions in VDMS vectorstore, updates VDMS
related notebooks, updates tests, and upgrade version of VDMS (>=0.0.20)
**Issue:** N/A
**Dependencies:**
- Update vdms>=0.0.20
Thank you for contributing to LangChain!
- This PR adds vector search filtering for Azure Cosmos DB Mongo vCore
and NoSQL.
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Regardless of whether `embedding_func` is set or not, the 'text'
attribute of document should be assigned, otherwise the `page_content`
in the document of the final search result will be lost
**Description:** At the moment neo4j wrapper is using setVectorProperty,
which is deprecated
([link](https://neo4j.com/docs/operations-manual/5/reference/procedures/#procedure_db_create_setVectorProperty)).
I replaced with the non-deprecated version.
Neo4j recently introduced a new cypher method to associate embeddings
into relations using "setRelationshipVectorProperty" method. In this PR
I also implemented a new method to perform this association maintaining
the same format used in the "add_embeddings" method which is used to
associate embeddings into Nodes.
I also included a test case for this new method.
Thank you for contributing to LangChain!
- [X] *ApertureDB as vectorstore**: "community: Add ApertureDB as a
vectorestore"
- **Description:** this change provides a new community integration that
uses ApertureData's ApertureDB as a vector store.
- **Issue:** none
- **Dependencies:** depends on ApertureDB Python SDK
- **Twitter handle:** ApertureData
- [X] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
Integration tests rely on a local run of a public docker image.
Example notebook additionally relies on a local Ollama server.
- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
All lint tests pass.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Gautam <gautam@aperturedata.io>
**Description:**
Databricks Vector Search recently added support for hybrid
keyword-similarity search.
See [usage
examples](https://docs.databricks.com/en/generative-ai/create-query-vector-search.html#query-a-vector-search-endpoint)
from their documentation.
This PR updates the Langchain vectorstore interface for Databricks to
enable the user to pass the *query_type* parameter to
*similarity_search* to make use of this functionality.
By default, there will not be any changes for existing users of this
interface. To use the new hybrid search feature, it is now possible to
do
```python
# ...
dvs = DatabricksVectorSearch(index)
dvs.similarity_search("my search query", query_type="HYBRID")
```
Or using the retriever:
```python
retriever = dvs.as_retriever(
search_kwargs={
"query_type": "HYBRID",
}
)
retriever.invoke("my search query")
```
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** This pull request introduces two new methods to the
Langchain Chroma partner package that enable similarity search based on
image embeddings. These methods enhance the package's functionality by
allowing users to search for images similar to a given image URI. Also
introduces a notebook to demonstrate it's use.
- **Issue:** N/A
- **Dependencies:** None
- **Twitter handle:** @mrugank9009
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
**Description**:
This PR fixes a bug described in the issue in #24064, when using the
AzureSearch Vectorstore with the asyncronous methods to do search which
is also the method used for the retriever. The proposed change includes
just change the access of the embedding as optional because is it not
used anywhere to retrieve documents. Actually, the syncronous methods of
retrieval do not use the embedding neither.
With this PR the code given by the user in the issue works.
```python
vectorstore = AzureSearch(
azure_search_endpoint=os.getenv("AI_SEARCH_ENDPOINT_SECRET"),
azure_search_key=os.getenv("AI_SEARCH_API_KEY"),
index_name=os.getenv("AI_SEARCH_INDEX_NAME_SECRET"),
fields=fields,
embedding_function=encoder,
)
retriever = vectorstore.as_retriever(search_type="hybrid", k=2)
await vectorstore.avector_search("what is the capital of France")
await retriever.ainvoke("what is the capital of France")
```
**Issue**:
The Azure Search Vectorstore is not working when searching for documents
with asyncronous methods, as described in issue #24064
**Dependencies**:
There are no extra dependencies required for this change.
---------
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>