We have a test
[test_structured_few_shot_examples](ad4333ca03/libs/standard-tests/langchain_tests/integration_tests/chat_models.py (L546))
in standard integration tests that implements a version of tool-calling
few shot examples that works with ~all tested providers. The formulation
supported by ~all providers is: `human message, tool call, tool message,
AI reponse`.
Here we update
`langchain_core.utils.function_calling.tool_example_to_messages` to
support this formulation.
The `tool_example_to_messages` util is undocumented outside of our API
reference. IMO, if we are testing that this function works across all
providers, it can be helpful to feature it in our guides. The structured
few-shot examples we document at the moment require users to implement
this function and can be simplified.
Last week Anthropic released version 0.39.0 of its python sdk, which
enabled support for Python 3.13. This release deleted a legacy
`client.count_tokens` method, which we currently access during init of
the `Anthropic` LLM. Anthropic has replaced this functionality with the
[client.beta.messages.count_tokens()
API](https://github.com/anthropics/anthropic-sdk-python/pull/726).
To enable support for `anthropic >= 0.39.0` and Python 3.13, here we
drop support for the legacy token counting method, and add support for
the new method via `ChatAnthropic.get_num_tokens_from_messages`.
To fully support the token counting API, we update the signature of
`get_num_tokens_from_message` to accept tools everywhere.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"
- [ ] **description**
langchain_core.runnables.graph_mermaid.draw_mermaid_png calls this
function, but the Mermaid API returns JPEG by default. To be consistent,
add the option `file_type` with the default `png` type.
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
With this small change, I didn't add tests and docs.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more:
One long sentence was divided into two.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
- **Description:**
Currently CommaSeparatedListOutputParser can't handle strings that may
contain commas within a column. It would parse any commas as the
delimiter.
Ex.
"foo, foo2", "bar", "baz"
It will create 4 columns: "foo", "foo2", "bar", "baz"
This should be 3 columns:
"foo, foo2", "bar", "baz"
- **Dependencies:**
Added 2 additional imports, but they are built in python packages.
import csv
from io import StringIO
- **Twitter handle:** @jkyamog
- [ ] **Add tests and docs**:
1. added simple unit test test_multiple_items_with_comma
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "core: use friendlier names for duplicated nodes in
mermaid output"
- **Description:** When generating the Mermaid visualization of a chain,
if the chain had multiple nodes of the same type, the reid function
would replace their names with the UUID node_id. This made the generated
graph difficult to understand. This change deduplicates the nodes in a
chain by appending an index to their names.
- **Issue:** None
- **Discussion:**
https://github.com/langchain-ai/langchain/discussions/27714
- **Dependencies:** None
- [ ] **Add tests and docs**:
- Currently this functionality is not covered by unit tests, happy to
add tests if you'd like
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
# Example Code:
```python
from langchain_core.runnables import RunnablePassthrough
def fake_llm(prompt: str) -> str: # Fake LLM for the example
return "completion"
runnable = {
'llm1': fake_llm,
'llm2': fake_llm,
} | RunnablePassthrough.assign(
total_chars=lambda inputs: len(inputs['llm1'] + inputs['llm2'])
)
print(runnable.get_graph().draw_mermaid(with_styles=False))
```
# Before
```mermaid
graph TD;
Parallel_llm1_llm2_Input --> 0b01139db5ed4587ad37964e3a40c0ec;
0b01139db5ed4587ad37964e3a40c0ec --> Parallel_llm1_llm2_Output;
Parallel_llm1_llm2_Input --> a98d4b56bd294156a651230b9293347f;
a98d4b56bd294156a651230b9293347f --> Parallel_llm1_llm2_Output;
Parallel_total_chars_Input --> Lambda;
Lambda --> Parallel_total_chars_Output;
Parallel_total_chars_Input --> Passthrough;
Passthrough --> Parallel_total_chars_Output;
Parallel_llm1_llm2_Output --> Parallel_total_chars_Input;
```
# After
```mermaid
graph TD;
Parallel_llm1_llm2_Input --> fake_llm_1;
fake_llm_1 --> Parallel_llm1_llm2_Output;
Parallel_llm1_llm2_Input --> fake_llm_2;
fake_llm_2 --> Parallel_llm1_llm2_Output;
Parallel_total_chars_Input --> Lambda;
Lambda --> Parallel_total_chars_Output;
Parallel_total_chars_Input --> Passthrough;
Passthrough --> Parallel_total_chars_Output;
Parallel_llm1_llm2_Output --> Parallel_total_chars_Input;
```
**Description:**
This PR fixes an issue where non-ASCII characters in Pydantic field
descriptions were being escaped to their Unicode representations when
using `JsonOutputParser`. The change allows non-ASCII characters to be
preserved in the output, which is especially important for multilingual
support and when working with non-English languages.
**Issue:** Fixes#27256
**Example Code:**
```python
from pydantic import BaseModel, Field
from langchain_core.output_parsers import JsonOutputParser
class Article(BaseModel):
title: str = Field(description="科学文章的标题")
output_data_structure = Article
parser = JsonOutputParser(pydantic_object=output_data_structure)
print(parser.get_format_instructions())
```
**Previous Output**:
```... "title": {"description": "\\u79d1\\u5b66\\u6587\\u7ae0\\u7684\\u6807\\u9898", "title": "Title", "type": "string"}} ...```
**Current Output**:
```... "title": {"description": "科学文章的标题", "title": "Title", "type":
"string"}} ...```
**Changes made**:
- Modified `json.dumps()` call in
`langchain_core/output_parsers/json.py` to use `ensure_ascii=False`
- Added a unit test to verify Unicode handling
Co-authored-by: Harsimran-19 <harsimran1869@gmail.com>
**Description:**
When annotating a function with the @tool decorator, the symbol should
have type BaseTool. The previous type annotations did not convey that to
type checkers. This patch creates 4 overloads for the tool function for
the 4 different use cases.
1. @tool decorator with no arguments
2. @tool decorator with only keyword arguments
3. @tool decorator with a name argument (and possibly keyword arguments)
4. Invoking tool as function with a name and runnable positional
arguments
The main function is updated to match the overloads. The changes are
100% backwards compatible (all existing calls should continue to work,
just with better type annotations).
**Twitter handle:** @nvachhar
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
**Description:** We improve the performance of the InMemoryVectorStore.
**Isue:** Originally, similarity was computed document by document:
```
for doc in self.store.values():
vector = doc["vector"]
similarity = float(cosine_similarity([embedding], [vector]).item(0))
```
This is inefficient and does not make use of numpy vectorization.
This PR computes the similarity in one vectorized go:
```
docs = list(self.store.values())
similarity = cosine_similarity([embedding], [doc["vector"] for doc in docs])
```
**Dependencies:** None
**Twitter handle:** @b12_consulting, @Vincent_Min
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Fixes#27411
**Description:** Adds `template_format` to the `ImagePromptTemplate`
class and updates passing in the `template_format` parameter from
ChatPromptTemplate instead of the hardcoded "f-string".
Also updated docs and typing related to `template_format` to be more
up-to-date and specific.
**Dependencies:** None
**Add tests and docs**: Added unit tests to validate fix. Needed to
update `test_chat` snapshot due to adding new attribute
`template_format` in `ImagePromptTemplate`.
---------
Co-authored-by: Vadym Barda <vadym@langchain.dev>