From what I can tell response using SDK is not deterministic:
```python
import numpy as np
import openai
documents = ["disallowed special token '<|endoftext|>'"]
model = "text-embedding-ada-002"
direct_output_1 = (
openai.OpenAI()
.embeddings.create(input=documents, model=model)
.data[0]
.embedding
)
for i in range(10):
direct_output_2 = (
openai.OpenAI()
.embeddings.create(input=documents, model=model)
.data[0]
.embedding
)
print(f"{i}: {np.isclose(direct_output_1, direct_output_2).all()}")
```
```
0: True
1: True
2: True
3: True
4: False
5: True
6: True
7: True
8: True
9: True
```
See related discussion here:
https://community.openai.com/t/can-text-embedding-ada-002-be-made-deterministic/318054
Found the same result using `"text-embedding-3-small"`.
Given the current erroring behavior, every time we've moved a kwarg from
model_kwargs and made it its own field that was a breaking change.
Updating this behavior to support the old instantiations /
serializations.
Assuming build_extra_kwargs was not something that itself is being used
externally and needs to be kept backwards compatible
Chunking of the input array controlled by `self.chunk_size` is being
ignored when `self.check_embedding_ctx_length` is disabled. Effectively,
the chunk size is assumed to be equal 1 in such a case. This is
suprising.
The PR takes into account `self.chunk_size` passed by the user.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** This is a **one line change**. the
`self.async_client.with_raw_response.create(**payload)` call is not
properly awaited within the `_astream` method. In `_agenerate` this is
done already, but likely forgotten in the other method.
- **Issue:** Not applicable
- **Dependencies:** No dependencies required.
(If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.)
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- [ ] **PR message**:
- **Description:** Compatible with other llm (eg: deepseek-chat, glm-4)
usage meta data
- **Issue:** N/A
- **Dependencies:** no new dependencies added
- [ ] **Add tests and docs**:
libs/partners/openai/tests/unit_tests/chat_models/test_base.py
```shell
cd libs/partners/openai
poetry run pytest tests/unit_tests/chat_models/test_base.py::test_openai_astream
poetry run pytest tests/unit_tests/chat_models/test_base.py::test_openai_stream
poetry run pytest tests/unit_tests/chat_models/test_base.py::test_deepseek_astream
poetry run pytest tests/unit_tests/chat_models/test_base.py::test_deepseek_stream
poetry run pytest tests/unit_tests/chat_models/test_base.py::test_glm4_astream
poetry run pytest tests/unit_tests/chat_models/test_base.py::test_glm4_stream
```
---------
Co-authored-by: hyman <hyman@xiaozancloud.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Hello.
First of all, thank you for maintaining such a great project.
## Description
In https://github.com/langchain-ai/langchain/pull/25123, support for
structured_output is added. However, `"additionalProperties": false`
needs to be included at all levels when a nested object is generated.
error from current code:
https://gist.github.com/fufufukakaka/e9b475300e6934853d119428e390f204
```
BadRequestError: Error code: 400 - {'error': {'message': "Invalid schema for response_format 'JokeWithEvaluation': In context=('properties', 'self_evaluation'), 'additionalProperties' is required to be supplied and to be false", 'type': 'invalid_request_error', 'param': 'response_format', 'code': None}}
```
Reference: [Introducing Structured Outputs in the
API](https://openai.com/index/introducing-structured-outputs-in-the-api/)
```json
{
"model": "gpt-4o-2024-08-06",
"messages": [
{
"role": "system",
"content": "You are a helpful math tutor."
},
{
"role": "user",
"content": "solve 8x + 31 = 2"
}
],
"response_format": {
"type": "json_schema",
"json_schema": {
"name": "math_response",
"strict": true,
"schema": {
"type": "object",
"properties": {
"steps": {
"type": "array",
"items": {
"type": "object",
"properties": {
"explanation": {
"type": "string"
},
"output": {
"type": "string"
}
},
"required": ["explanation", "output"],
"additionalProperties": false
}
},
"final_answer": {
"type": "string"
}
},
"required": ["steps", "final_answer"],
"additionalProperties": false
}
}
}
}
```
In the current code, `"additionalProperties": false` is only added at
the last level.
This PR introduces the `_add_additional_properties_key` function, which
recursively adds `"additionalProperties": false` to the entire JSON
schema for the request.
Twitter handle: `@fukkaa1225`
Thank you!
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This fix is for #21726. When having other packages installed that
require the `openai_api_base` environment variable, users are not able
to instantiate the AzureChatModels or AzureEmbeddings.
This PR adds a new value `ignore_openai_api_base` which is a bool. When
set to True, it sets `openai_api_base` to `None`
Two new tests were added for the `test_azure` and a new file
`test_azure_embeddings`
A different approach may be better for this. If you can think of better
logic, let me know and I can adjust it.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- add test for structured output
- fix bug with structured output for Azure
- better testing on Groq (break out Mixtral + Llama3 and add xfails
where needed)
- Refactor standard test classes to make them easier to configure
- Update openai to support stop_sequences init param
- Update groq to support stop_sequences init param
- Update fireworks to support max_retries init param
- Update ChatModel.bind_tools to type tool_choice
- Update groq to handle tool_choice="any". **this may be controversial**
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Here we add `stream_usage` to ChatOpenAI as:
1. a boolean attribute
2. a kwarg to _stream and _astream.
Question: should the `stream_usage` attribute be `bool`, or `bool |
None`?
Currently I've kept it `bool` and defaulted to False. It was implemented
on
[ChatAnthropic](e832bbb486/libs/partners/anthropic/langchain_anthropic/chat_models.py (L535))
as a bool. However, to maintain support for users who access the
behavior via OpenAI's `stream_options` param, this ends up being
possible:
```python
llm = ChatOpenAI(model_kwargs={"stream_options": {"include_usage": True}})
assert not llm.stream_usage
```
(and this model will stream token usage).
Some options for this:
- it's ok
- make the `stream_usage` attribute bool or None
- make an \_\_init\_\_ for ChatOpenAI, set a `._stream_usage` attribute
and read `.stream_usage` from a property
Open to other ideas as well.
Adds `response_metadata` to stream responses from OpenAI. This is
returned with `invoke` normally, but wasn't implemented for `stream`.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>