Commit Graph

37 Commits

Author SHA1 Message Date
Tomaz Bratanic
a8561bc303
Fix async parsing for llm graph transformer (#26650) 2024-09-19 09:15:33 -04:00
Tomaz Bratanic
3bcd641bc1
Add check for prompt based approach in llm graph transformer (#26519) 2024-09-16 15:01:09 -07:00
Erick Friis
c2a3021bb0
multiple: pydantic 2 compatibility, v0.3 (#26443)
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com>
Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com>
Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com>
Co-authored-by: ZhangShenao <15201440436@163.com>
Co-authored-by: Friso H. Kingma <fhkingma@gmail.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Nuno Campos <nuno@langchain.dev>
Co-authored-by: Morgante Pell <morgantep@google.com>
2024-09-13 14:38:45 -07:00
Tomaz Bratanic
c649b449d7
Add the option to ignore structured output method to LLM graph transf… (#26013)
Open source models like Llama3.1 have function calling, but it's not
that great. Therefore, we introduce the option to ignore model's
function calling and just use the prompt-based approach
2024-09-04 09:15:43 -04:00
Tomaz Bratanic
6703d795c5
Handle Ollama tool raw schema in llmgraphtransformer (#25752) 2024-08-26 07:26:26 -04:00
basirsedighi
0f3fe44e44
parsed_json is expected to be a list of dictionaries, but it seems to… (#24018)
parsed_json is expected to be a list of dictionaries, but it seems to…
be a single dictionary instead.
This is at
libs/experimental/langchain_experimental/graph_transformers/llm.py
process process_response

Thank you for contributing to LangChain!

- [ ] **Bugfix**: "experimental: bugfix"

---------

Co-authored-by: based <basir.sedighi@nris.no>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-08-22 19:09:43 +00:00
Tomaz Bratanic
d166967003
experimental: Add gliner graph transformer (#25066)
You can use this with:

```
from langchain_experimental.graph_transformers import GlinerGraphTransformer
gliner = GlinerGraphTransformer(allowed_nodes=["Person", "Organization", "Nobel"], allowed_relationships=["EMPLOYEE", "WON"])

from langchain_core.documents import Document

text = """
Marie Curie, was a Polish and naturalised-French physicist and chemist who conducted pioneering research on radioactivity.
She was the first woman to win a Nobel Prize, the first person to win a Nobel Prize twice, and the only person to win a Nobel Prize in two scientific fields.
Her husband, Pierre Curie, was a co-winner of her first Nobel Prize, making them the first-ever married couple to win the Nobel Prize and launching the Curie family legacy of five Nobel Prizes.
She was, in 1906, the first woman to become a professor at the University of Paris.
"""
documents = [Document(page_content=text)]

gliner.convert_to_graph_documents(documents)
```

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-05 21:01:27 +00:00
Tomaz Bratanic
f9a11a9197
Add relik transformer config (#25019) 2024-08-03 08:41:45 -04:00
Bagatur
e81ddb32a6
docs: fix kwargs docstring (#25010)
Fix:
![Screenshot 2024-08-02 at 5 33 37
PM](https://github.com/user-attachments/assets/7c56cdeb-ee81-454c-b3eb-86aa8a9bdc8d)
2024-08-02 19:54:54 -07:00
Tomaz Bratanic
7061869aec
Add relik graph transformer (#24982)
Relik is a new library for graph extraction that offers smaller and
cheaper models for graph construction
2024-08-02 13:55:41 -04:00
cffranco94
b01d938997
experimental: Add config to convert_to_graph_documents (#24012)
PR title: Experimental: Add config to convert_to_graph_documents

Description: In order to use langfuse, i need to pass the langfuse
configuration when invoking the chain. langchain_experimental does not
allow to add any parameters (beside the documents) to the
convert_to_graph_documents method. This way, I cannot monitor the chain
in langfuse.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Catarina Franco <catarina.franco@criticalsoftware.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-30 17:01:06 +00:00
WU LIFU
2ba8393182
graph_transformers: bug fix for create_simple_model not passing in ll… (#24643)
issue: #24615 

descriptions: The _Graph pydantic model generated from
create_simple_model (which LLMGraphTransformer uses when allowed nodes
and relationships are provided) does not constrain the relationships
(source and target types, relationship type), and the node and
relationship properties with enums when using ChatOpenAI.
The issue is that when calling optional_enum_field throughout
create_simple_model the llm_type parameter is not passed in except for
when creating node type. Passing it into each call fixes the issue.

Co-authored-by: Lifu Wu <lifu@nextbillion.ai>
2024-07-29 07:00:56 -04:00
Bagatur
a0c2281540
infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00
Jordy Jackson Antunes da Rocha
a50eabbd48
experimental: LLMGraphTransformer add missing conditional adding restrictions to prompts for LLM that do not support function calling (#22793)
- Description: Modified the prompt created by the function
`create_unstructured_prompt` (which is called for LLMs that do not
support function calling) by adding conditional checks that verify if
restrictions on entity types and rel_types should be added to the
prompt. If the user provides a sufficiently large text, the current
prompt **may** fail to produce results in some LLMs. I have first seen
this issue when I implemented a custom LLM class that did not support
Function Calling and used Gemini 1.5 Pro, but I was able to replicate
this issue using OpenAI models.

By loading a sufficiently large text
```python
from langchain_community.llms import Ollama
from langchain_openai import ChatOpenAI, OpenAI
from langchain_core.prompts import PromptTemplate
import re
from langchain_experimental.graph_transformers import LLMGraphTransformer
from langchain_core.documents import Document

with open("texto-longo.txt", "r") as file:
    full_text = file.read()
    partial_text = full_text[:4000]

documents = [Document(page_content=partial_text)] # cropped to fit GPT 3.5 context window
```

And using the chat class (that has function calling)
```python
chat_openai = ChatOpenAI(model="gpt-3.5-turbo", model_kwargs={"seed": 42})
chat_gpt35_transformer = LLMGraphTransformer(llm=chat_openai)
graph_from_chat_gpt35 = chat_gpt35_transformer.convert_to_graph_documents(documents)
```
It works:
```
>>> print(graph_from_chat_gpt35[0].nodes)
[Node(id="Jesu, Joy of Man's Desiring", type='Music'), Node(id='Godel', type='Person'), Node(id='Johann Sebastian Bach', type='Person'), Node(id='clever way of encoding the complicated expressions as numbers', type='Concept')]
```

But if you try to use the non-chat LLM class (that does not support
function calling)
```python
openai = OpenAI(
    model="gpt-3.5-turbo-instruct",
    max_tokens=1000,
)
gpt35_transformer = LLMGraphTransformer(llm=openai)
graph_from_gpt35 = gpt35_transformer.convert_to_graph_documents(documents)
```

It uses the prompt that has issues and sometimes does not produce any
result
```
>>> print(graph_from_gpt35[0].nodes)
[]
```

After implementing the changes, I was able to use both classes more
consistently:

```shell
>>> chat_gpt35_transformer = LLMGraphTransformer(llm=chat_openai)
>>> graph_from_chat_gpt35 = chat_gpt35_transformer.convert_to_graph_documents(documents)
>>> print(graph_from_chat_gpt35[0].nodes)
[Node(id="Jesu, Joy Of Man'S Desiring", type='Music'), Node(id='Johann Sebastian Bach', type='Person'), Node(id='Godel', type='Person')]
>>> gpt35_transformer = LLMGraphTransformer(llm=openai)
>>> graph_from_gpt35 = gpt35_transformer.convert_to_graph_documents(documents)
>>> print(graph_from_gpt35[0].nodes)
[Node(id='I', type='Pronoun'), Node(id="JESU, JOY OF MAN'S DESIRING", type='Song'), Node(id='larger memory', type='Memory'), Node(id='this nice tree structure', type='Structure'), Node(id='how you can do it all with the numbers', type='Process'), Node(id='JOHANN SEBASTIAN BACH', type='Composer'), Node(id='type of structure', type='Characteristic'), Node(id='that', type='Pronoun'), Node(id='we', type='Pronoun'), Node(id='worry', type='Verb')]
```

The results are a little inconsistent because the GPT 3.5 model may
produce incomplete json due to the token limit, but that could be solved
(or mitigated) by checking for a complete json when parsing it.
2024-07-01 17:33:51 +00:00
Tomaz Bratanic
22fa32e164
LLM Graph transformer dealing with empty strings (#23368)
Pydantic allows empty strings:

```
from langchain.pydantic_v1 import Field, BaseModel

class Property(BaseModel):
  """A single property consisting of key and value"""
  key: str = Field(..., description="key")
  value: str = Field(..., description="value")

x = Property(key="", value="")
```

Which can produce errors downstream. We simply ignore those records
2024-06-25 13:01:53 -04:00
Tomaz Bratanic
1c661fd849
Improve llm graph transformer docstring (#22939) 2024-06-15 15:33:26 -04:00
Istvan/Nebulinq
513e491ce9
experimental: LLMGraphTransformer - added relationship properties. (#21856)
- **Description:** 
The generated relationships in the graph had no properties, but the
Relationship class was properly defined with properties. This made it
very difficult to transform conditional sentences into a graph. Adding
properties to relationships can solve this issue elegantly.
The changes expand on the existing LLMGraphTransformer implementation
but add the possibility to define allowed relationship properties like
this: LLMGraphTransformer(llm=llm, relationship_properties=["Condition",
"Time"],)
- **Issue:** 
    no issue found
 - **Dependencies:**
    n/a
- **Twitter handle:** 
    @IstvanSpace


-Quick Test
=================================================================
from dotenv import load_dotenv
import os
from langchain_community.graphs import Neo4jGraph
from langchain_experimental.graph_transformers import
LLMGraphTransformer
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.documents import Document

load_dotenv()
os.environ["NEO4J_URI"] = os.getenv("NEO4J_URI")
os.environ["NEO4J_USERNAME"] = os.getenv("NEO4J_USERNAME")
os.environ["NEO4J_PASSWORD"] = os.getenv("NEO4J_PASSWORD")
graph = Neo4jGraph()
llm = ChatOpenAI(temperature=0, model_name="gpt-4o")
llm_transformer = LLMGraphTransformer(llm=llm)
#text = "Harry potter likes pies, but only if it rains outside"
text = "Jack has a dog named Max. Jack only walks Max if it is sunny
outside."
documents = [Document(page_content=text)]
llm_transformer_props = LLMGraphTransformer(
    llm=llm,
    relationship_properties=["Condition"],
)
graph_documents_props =
llm_transformer_props.convert_to_graph_documents(documents)
print(f"Nodes:{graph_documents_props[0].nodes}")
print(f"Relationships:{graph_documents_props[0].relationships}")
graph.add_graph_documents(graph_documents_props)

---------

Co-authored-by: Istvan Lorincz <istvan.lorincz@pm.me>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-06-14 14:41:04 -04:00
liugz18
8fd231086e
experimental[patch]: Fix graph_transformers llms #21482 (#22417)
Fix AttributeError on calling
LLMGraphTransformer.convert_to_graph_documents #21482

 since raw_schema is always a str

@baskaryan
2024-06-04 17:07:38 +00:00
Tomaz Bratanic
a43515ca65
experimental[patch]: Pass enum only to openai in llm graph transformer (#21860)
Some models like Groq return bad request if you pass in `enum` parameter
in tool definition
2024-05-20 15:02:48 -07:00
Tomaz Bratanic
89ff6a3d3b
Add sentiment and confidence levels to diffbotgraphtransformer (#21590)
Co-authored-by: Erick Friis <erickfriis@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-05-13 23:00:52 +00:00
Tomaz Bratanic
0bf7596839
Add simple node properties to llm graph transformer (#21369)
Add support for simple node properties in llm graph transformer.

Linter and dynamic pydantic classes aren't friends, hence I added two
ignores
2024-05-07 08:41:09 -07:00
Tomaz Bratanic
ad3fd44a7f
experimental: Fix llm graph transformer bug (#21362) 2024-05-06 23:59:55 -07:00
Tomaz Bratanic
5b6d1a907d
Add the extract types to diffbot graph transformer (#21315)
Before you could only extract triples (diffbot calls it facts) from
diffbot to avoid isolated nodes. However, sometimes isolated nodes can
still be useful like for prefiltering, so we want to allow users to
extract them if they want. Default behaviour is unchanged.
2024-05-06 09:19:52 -04:00
Tomaz Bratanic
7860e4c649
experimental[patch]: Add support for non-function calling LLMs in llm graph transformers (#21014) 2024-05-01 01:16:07 -04:00
Tomaz Bratanic
a1b105ac00
experimental[patch]: Skip pydantic validation for llm graph transformer and fix JSON response where possible (#19915)
LLMs might sometimes return invalid response for LLM graph transformer.
Instead of failing due to pydantic validation, we skip it and manually
check and optionally fix error where we can, so that more information
gets extracted
2024-04-12 11:29:25 -07:00
Luca Dorigo
f19229c564
core[patch]: fix beta, deprecated typing (#18877)
**Description:** 

While not technically incorrect, the TypeVar used for the `@beta`
decorator prevented pyright (and thus most vscode users) from correctly
seeing the types of functions/classes decorated with `@beta`.

This is in part due to a small bug in pyright
(https://github.com/microsoft/pyright/issues/7448 ) - however, the
`Type` bound in the typevar `C = TypeVar("C", Type, Callable)` is not
doing anything - classes are `Callables` by default, so by my
understanding binding to `Type` does not actually provide any more
safety - the modified annotation still works correctly for both
functions, properties, and classes.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-28 22:33:43 +00:00
Tomaz Bratanic
b04e663426
experimental[patch]: Flatten relationships in LLM graph transformer (#19642) 2024-03-27 19:35:34 -07:00
Juan Jose Miguel Ovalle Villamil
1fe10a3e3d
experimental[patch]: Enhance LLMGraphTransformer with async processing and improved readability (#19205)
- [x] **PR title**: "experimental: Enhance LLMGraphTransformer with
async processing and improved readability"


- [x] **PR message**: 
- **Description:** This pull request refactors the `process_response`
and `convert_to_graph_documents` methods in the LLMGraphTransformer
class to improve code readability and adds async versions of these
methods for concurrent processing.
    The main changes include:
- Simplifying list comprehensions and conditional logic in the
process_response method for better readability.
- Adding async versions aprocess_response and
aconvert_to_graph_documents to enable concurrent processing of
documents.
These enhancements aim to improve the overall efficiency and
maintainability of the `LLMGraphTransformer` class.
  - **Issue:** N/A
  - **Dependencies:** No additional dependencies required.
  - **Twitter handle:** @jjovalle99


- [x] **Add tests and docs**: N/A (This PR does not introduce a new
integration)


- [x] **Lint and test**: Ran make format, make lint, and make test from
the root of the modified package(s). All tests pass successfully.

Additional notes:

- The changes made in this PR are backwards compatible and do not
introduce any breaking changes.
- The PR touches only the `LLMGraphTransformer` class within the
experimental package.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-26 23:40:21 -07:00
Leonid Ganeline
4159a4723c
experimental[patch]: update module doc strings (#19539)
Added missed module descriptions. Fixed format.
2024-03-26 10:38:10 -04:00
Tomaz Bratanic
cda43c5a11
experimental[patch]: Fix LLM graph transformer default prompt (#18856)
Some LLMs do not allow multiple user messages in sequence.
2024-03-11 20:11:52 -07:00
Tomaz Bratanic
246724faab
LLM graph transformer prompt engineering (#18843)
A bit of prompt engineering to improve results
2024-03-09 11:27:16 -08:00
Tomaz Bratanic
c8c592d3f1
experimental[minor]: Add LLM graph transformer (#18733)
Add a class that constructs knowledge graphs based on text using an LLM.
2024-03-07 20:52:53 -08:00
Tomaz Bratanic
010a234f1e
docs: Fix diffbot graph transformer description (#18736)
The previous docstring was invalid
2024-03-07 19:25:41 -08:00
Leonid Ganeline
3f6bf852ea
experimental: docstrings update (#18048)
Added missed docstrings. Formatted docsctrings to the consistent format.
2024-02-23 21:24:16 -05:00
Erick Friis
ed789be8f4
docs, templates: update schema imports to core (#17885)
- chat models, messages
- documents
- agentaction/finish
- baseretriever,document
- stroutputparser
- more messages
- basemessage
- format_document
- baseoutputparser

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-22 15:58:44 -08:00
Bagatur
fa5d49f2c1
docs, experimental[patch], langchain[patch], community[patch]: update storage imports (#15429)
ran 
```bash
g grep -l "langchain.vectorstores" | xargs -L 1 sed -i '' "s/langchain\.vectorstores/langchain_community.vectorstores/g"
g grep -l "langchain.document_loaders" | xargs -L 1 sed -i '' "s/langchain\.document_loaders/langchain_community.document_loaders/g"
g grep -l "langchain.chat_loaders" | xargs -L 1 sed -i '' "s/langchain\.chat_loaders/langchain_community.chat_loaders/g"
g grep -l "langchain.document_transformers" | xargs -L 1 sed -i '' "s/langchain\.document_transformers/langchain_community.document_transformers/g"
g grep -l "langchain\.graphs" | xargs -L 1 sed -i '' "s/langchain\.graphs/langchain_community.graphs/g"
g grep -l "langchain\.memory\.chat_message_histories" | xargs -L 1 sed -i '' "s/langchain\.memory\.chat_message_histories/langchain_community.chat_message_histories/g"
gco master libs/langchain/tests/unit_tests/*/test_imports.py
gco master libs/langchain/tests/unit_tests/**/test_public_api.py
```
2024-01-02 16:47:11 -05:00
Tomaz Bratanic
db73c9d5b5
Diffbot Graph Transformer / Neo4j Graph document ingestion (#9979)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-09-06 13:32:59 -07:00