Commit Graph

6 Commits

Author SHA1 Message Date
Eric Pinzur
8eb38622a6
community: fixed bug in GraphVectorStoreRetriever (#27846)
Description:

This fixes an issue that mistakenly created in
https://github.com/langchain-ai/langchain/pull/27253. The issue
currently exists only in `langchain-community==0.3.4`.

Test cases were added to prevent this issue in the future.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-11-04 20:27:17 +00:00
Eric Pinzur
f636c83321
community: Cassandra Vector Store: modernize implementation (#27253)
**Description:** 

This PR updates `CassandraGraphVectorStore` to be based off
`CassandraVectorStore`, instead of using a custom CQL implementation.
This allows users using a `CassandraVectorStore` to upgrade to a
`GraphVectorStore` without having to change their database schema or
re-embed documents.

This PR also updates the documentation of the `GraphVectorStore` base
class and contains native async implementations for the standard graph
methods: `traversal_search` and `mmr_traversal_search` in
`CassandraVectorStore`.

**Issue:** No issue number.

**Dependencies:** https://github.com/langchain-ai/langchain/pull/27078
(already-merged)

**Lint and test**: 
- Lint and tests all pass, including existing
`CassandraGraphVectorStore` tests.
- Also added numerous additional tests based of the tests in
`langchain-astradb` which cover many more scenarios than the existing
tests for `Cassandra` and `CassandraGraphVectorStore`

** BREAKING CHANGE**

Note that this is a breaking change for existing users of
`CassandraGraphVectorStore`. They will need to wipe their database table
and restart.

However:
- The interfaces have not changed. Just the underlying storage
mechanism.
- Any one using `langchain_community.vectorstores.Cassandra` can instead
use `langchain_community.graph_vectorstores.CassandraGraphVectorStore`
and they will gain Graph capabilities without having to re-embed their
existing documents. This is the primary goal of this PR.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-22 18:11:11 +00:00
Erick Friis
311f861547
core, community: move graph vectorstores to community (#26678)
remove beta namespace from core, add to community
2024-09-19 11:38:14 -07:00
Ben Chambers
3691701d58
community[minor]: Add keybert-based link extractor (#24311)
- **Description:** Add a `KeybertLinkExtractor` for graph vectorstores.
This allows extracting links from keywords in a Document and linking
nodes that have common keywords.
- **Issue:** None
- **Dependencies:** None.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-19 12:25:07 -04:00
Ben Chambers
83f3d95ffa
community[minor]: GLiNER link extraction (#24314)
- **Description:** This allows extracting links between documents with
common named entities using [GLiNER](https://github.com/urchade/GLiNER).
- **Issue:** None
- **Dependencies:** None

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-19 15:34:54 +00:00
Christophe Bornet
42d049f618
core[minor]: Add Graph Store component (#23092)
This PR introduces a GraphStore component. GraphStore extends
VectorStore with the concept of links between documents based on
document metadata. This allows linking documents based on a variety of
techniques, including common keywords, explicit links in the content,
and other patterns.

This works with existing Documents, so it’s easy to extend existing
VectorStores to be used as GraphStores. The interface can be implemented
for any Vector Store technology that supports metadata, not only graph
DBs.

When retrieving documents for a given query, the first level of search
is done using classical similarity search. Next, links may be followed
using various traversal strategies to get additional documents. This
allows documents to be retrieved that aren’t directly similar to the
query but contain relevant information.

2 retrieving methods are added to the VectorStore ones : 
* traversal_search which gets all linked documents up to a certain depth
* mmr_traversal_search which selects linked documents using an MMR
algorithm to have more diverse results.

If a depth of retrieval of 0 is used, GraphStore is effectively a
VectorStore. It enables an easy transition from a simple VectorStore to
GraphStore by adding links between documents as a second step.

An implementation for Apache Cassandra is also proposed.

See
https://github.com/datastax/ragstack-ai/blob/main/libs/knowledge-store/notebooks/astra_support.ipynb
for a notebook explaining how to use GraphStore and that shows that it
can answer correctly to questions that a simple VectorStore cannot.

**Twitter handle:** _cbornet
2024-07-05 12:24:10 -04:00