This PR deprecates the beta upsert APIs in vectorstore.
We'll introduce them in a V2 abstraction instead to keep the existing
vectorstore implementations lighter weight.
The main problem with the existing APIs is that it's a bit more
challenging to
implement the correct behavior w/ respect to IDs since ID can be present
in
both the function signature and as an optional attribute on the document
object.
But VectorStores that pass the standard tests should have implemented
the semantics properly!
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
The get time point method in the _consume() method of
core.rate_limiters.InMemoryRateLimiter uses time.time(), which can be
affected by system time backwards. Therefore, it is recommended to use
the monotonically increasing monotonic() to obtain the time
```python
with self._consume_lock:
now = time.time() # time.time() -> time.monotonic()
# initialize on first call to avoid a burst
if self.last is None:
self.last = now
elapsed = now - self.last # when use time.time(), elapsed may be negative when system time backwards
```
Add a utility that can be used as a default factory
The goal will be to start migrating from of the pydantic models to use
`from_env` as a default factory if possible.
```python
from pydantic import Field, BaseModel
from langchain_core.utils import from_env
class Foo(BaseModel):
name: str = Field(default_factory=from_env('HELLO'))
```
This PR does an aesthetic sort of the config object attributes. This
will make it a bit easier to go back and forth between pydantic v1 and
pydantic v2 on the 0.3.x branch
- **Description:** This includes Pydantic field metadata in
`_create_subset_model_v2` so that it gets included in the final
serialized form that get sent out.
- **Issue:** #25031
- **Dependencies:** n/a
- **Twitter handle:** @gramliu
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
This PR adds a minimal document indexer abstraction.
The goal of this abstraction is to allow developers to create custom
retrievers that also have a standard indexing API and allow updating the
document content in them.
The abstraction comes with a test suite that can verify that the indexer
implements the correct semantics.
This is an iteration over a previous PRs
(https://github.com/langchain-ai/langchain/pull/24364). The main
difference is that we're sub-classing from BaseRetriever in this
iteration and as so have consolidated the sync and async interfaces.
The main problem with the current design is that runt time search
configuration has to be specified at init rather than provided at run
time.
We will likely resolve this issue in one of the two ways:
(1) Define a method (`get_retriever`) that will allow creating a
retriever at run time with a specific configuration.. If we do this, we
will likely break the subclass on BaseRetriever
(2) Generalize base retriever so it can support structured queries
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Add compatibility for pydantic 2 for a utility function.
This will help push some small changes to master, so they don't have to
be kept track of on a separate branch.
supports following UX
```python
class SubTool(TypedDict):
"""Subtool docstring"""
args: Annotated[Dict[str, Any], {}, "this does bar"]
class Tool(TypedDict):
"""Docstring
Args:
arg1: foo
"""
arg1: str
arg2: Union[int, str]
arg3: Optional[List[SubTool]]
arg4: Annotated[Literal["bar", "baz"], ..., "this does foo"]
arg5: Annotated[Optional[float], None]
```
- can parse google style docstring
- can use Annotated to specify default value (second arg)
- can use Annotated to specify arg description (third arg)
- can have nested complex types
Anthropic models (including via Bedrock and other cloud platforms)
accept a status/is_error attribute on tool messages/results
(specifically in `tool_result` content blocks for Anthropic API). Adding
a ToolMessage.status attribute so that users can set this attribute when
using those models
This PR proposes to create a rate limiter in the chat model directly,
and would replace: https://github.com/langchain-ai/langchain/pull/21992
It resolves most of the constraints that the Runnable rate limiter
introduced:
1. It's not annoying to apply the rate limiter to existing code; i.e.,
possible to roll out the change at the location where the model is
instantiated,
rather than at every location where the model is used! (Which is
necessary
if the model is used in different ways in a given application.)
2. batch rate limiting is enforced properly
3. the rate limiter works correctly with streaming
4. the rate limiter is aware of the cache
5. The rate limiter can take into account information about the inputs
into the
model (we can add optional inputs to it down-the road together with
outputs!)
The only downside is that information will not be properly reflected in
tracing
as we don't have any metadata evens about a rate limiter. So the total
time
spent on a model invocation will be:
* time spent waiting for the rate limiter
* time spend on the actual model request
## Example
```python
from langchain_core.rate_limiters import InMemoryRateLimiter
from langchain_groq import ChatGroq
groq = ChatGroq(rate_limiter=InMemoryRateLimiter(check_every_n_seconds=1))
groq.invoke('hello')
```
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
### Description
* support asynchronous in InMemoryVectorStore
* since embeddings might be possible to call asynchronously, ensure that
both asynchronous and synchronous functions operate correctly.