OpenAI changed their API to require the `partial_images` parameter when
using image generation + streaming.
As described in https://github.com/langchain-ai/langchain/pull/31424, we
are ignoring partial images. Here, we accept the `partial_images`
parameter (as required by OpenAI), but emit a warning and continue to
ignore partial images.
Does not support partial images during generation at the moment. Before
doing that I'd like to figure out how to specify the aggregation logic
without requiring changes in core.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Scheduled testing started failing today because the Responses API
stopped raising `BadRequestError` for a schema that was previously
invalid when `strict=True`.
Although docs still say that [some type-specific keywords are not yet
supported](https://platform.openai.com/docs/guides/structured-outputs#some-type-specific-keywords-are-not-yet-supported)
(including `minimum` and `maximum` for numbers), the below appears to
run and correctly respect the constraints:
```python
import json
import openai
maximums = list(range(1, 11))
arg_values = []
for maximum in maximums:
tool = {
"type": "function",
"name": "magic_function",
"description": "Applies a magic function to an input.",
"parameters": {
"properties": {
"input": {"maximum": maximum, "minimum": 0, "type": "integer"}
},
"required": ["input"],
"type": "object",
"additionalProperties": False
},
"strict": True
}
client = openai.OpenAI()
response = client.responses.create(
model="gpt-4.1",
input=[{"role": "user", "content": "What is the value of magic_function(3)? Use the tool."}],
tools=[tool],
)
function_call = next(item for item in response.output if item.type == "function_call")
args = json.loads(function_call.arguments)
arg_values.append(args["input"])
print(maximums)
print(arg_values)
# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# [1, 2, 3, 3, 3, 3, 3, 3, 3, 3]
```
Until yesterday this raised BadRequestError.
The same is not true of Chat Completions, which appears to still raise
BadRequestError
```python
tool = {
"type": "function",
"function": {
"name": "magic_function",
"description": "Applies a magic function to an input.",
"parameters": {
"properties": {
"input": {"maximum": 5, "minimum": 0, "type": "integer"}
},
"required": ["input"],
"type": "object",
"additionalProperties": False
},
"strict": True
}
}
response = client.chat.completions.create(
model="gpt-4.1",
messages=[{"role": "user", "content": "What is the value of magic_function(3)? Use the tool."}],
tools=[tool],
)
response # raises BadRequestError
```
Here we update tests accordingly.
Some providers include (legacy) function calls in `additional_kwargs` in
addition to tool calls. We currently unpack both function calls and tool
calls if present, but OpenAI will raise 400 in this case.
This can come up if providers are mixed in a tool-calling loop. Example:
```python
from langchain.chat_models import init_chat_model
from langchain_core.messages import HumanMessage
from langchain_core.tools import tool
@tool
def get_weather(location: str) -> str:
"""Get weather at a location."""
return "It's sunny."
gemini = init_chat_model("google_genai:gemini-2.0-flash-001").bind_tools([get_weather])
openai = init_chat_model("openai:gpt-4.1-mini").bind_tools([get_weather])
input_message = HumanMessage("What's the weather in Boston?")
tool_call_message = gemini.invoke([input_message])
assert len(tool_call_message.tool_calls) == 1
tool_call = tool_call_message.tool_calls[0]
tool_message = get_weather.invoke(tool_call)
response = openai.invoke( # currently raises 400 / BadRequestError
[input_message, tool_call_message, tool_message]
)
```
Here we ignore function calls if tool calls are present.