OpenAI changed their API to require the `partial_images` parameter when
using image generation + streaming.
As described in https://github.com/langchain-ai/langchain/pull/31424, we
are ignoring partial images. Here, we accept the `partial_images`
parameter (as required by OpenAI), but emit a warning and continue to
ignore partial images.
Does not support partial images during generation at the moment. Before
doing that I'd like to figure out how to specify the aggregation logic
without requiring changes in core.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Some providers include (legacy) function calls in `additional_kwargs` in
addition to tool calls. We currently unpack both function calls and tool
calls if present, but OpenAI will raise 400 in this case.
This can come up if providers are mixed in a tool-calling loop. Example:
```python
from langchain.chat_models import init_chat_model
from langchain_core.messages import HumanMessage
from langchain_core.tools import tool
@tool
def get_weather(location: str) -> str:
"""Get weather at a location."""
return "It's sunny."
gemini = init_chat_model("google_genai:gemini-2.0-flash-001").bind_tools([get_weather])
openai = init_chat_model("openai:gpt-4.1-mini").bind_tools([get_weather])
input_message = HumanMessage("What's the weather in Boston?")
tool_call_message = gemini.invoke([input_message])
assert len(tool_call_message.tool_calls) == 1
tool_call = tool_call_message.tool_calls[0]
tool_message = get_weather.invoke(tool_call)
response = openai.invoke( # currently raises 400 / BadRequestError
[input_message, tool_call_message, tool_message]
)
```
Here we ignore function calls if tool calls are present.
partners: (langchain-openai) total_tokens should not add 'Nonetype' t…
# PR Description
## Description
Fixed an issue in `langchain-openai` where `total_tokens` was
incorrectly adding `None` to an integer, causing a TypeError. The fix
ensures proper type checking before adding token counts.
## Issue
Fixes the TypeError traceback shown in the image where `'NoneType'`
cannot be added to an integer.
## Dependencies
None
## Twitter handle
None

Co-authored-by: qiulijie <qiulijie@yuaiweiwu.com>
**What does this PR do?**
This PR replaces deprecated usages of ```.dict()``` with
```.model_dump()``` to ensure compatibility with Pydantic v2 and prepare
for v3, addressing the deprecation warning
```PydanticDeprecatedSince20``` as required in [Issue#
31103](https://github.com/langchain-ai/langchain/issues/31103).
**Changes made:**
* Replaced ```.dict()``` with ```.model_dump()``` in multiple locations
* Ensured consistency with Pydantic v2 migration guidelines
* Verified compatibility across affected modules
**Notes**
* This is a code maintenance and compatibility update
* Tested locally with Pydantic v2.11
* No functional logic changes; only internal method replacements to
prevent deprecation issues
When aggregating AIMessageChunks in a stream, core prefers the leftmost
non-null ID. This is problematic because:
- Core assigns IDs when they are null to `f"run-{run_manager.run_id}"`
- The desired meaningful ID might not be available until midway through
the stream, as is the case for the OpenAI Responses API.
For the OpenAI Responses API, we assign message IDs to the top-level
`AIMessage.id`. This works in `.(a)invoke`, but during `.(a)stream` the
IDs get overwritten by the defaults assigned in langchain-core. These
IDs
[must](https://community.openai.com/t/how-to-solve-badrequesterror-400-item-rs-of-type-reasoning-was-provided-without-its-required-following-item-error-in-responses-api/1151686/9)
be available on the AIMessage object to support passing reasoning items
back to the API (e.g., if not using OpenAI's `previous_response_id`
feature). We could add them elsewhere, but seeing as we've already made
the decision to store them in `.id` during `.(a)invoke`, addressing the
issue in core lets us fix the problem with no interface changes.
The `_chunk_size` has not changed by method `self._tokenize`, So i think
these is duplicate code.
Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
Following https://github.com/langchain-ai/langchain/pull/30909: need to
retain "empty" reasoning output when streaming, e.g.,
```python
{'id': 'rs_...', 'summary': [], 'type': 'reasoning'}
```
Tested by existing integration tests, which are currently failing.
**langchain_openai: Support of reasoning summary streaming**
**Description:**
OpenAI API now supports streaming reasoning summaries for reasoning
models (o1, o3, o3-mini, o4-mini). More info about it:
https://platform.openai.com/docs/guides/reasoning#reasoning-summaries
It is supported only in Responses API (not Completion API), so you need
to create LangChain Open AI model as follows to support reasoning
summaries streaming:
```
llm = ChatOpenAI(
model="o4-mini", # also o1, o3, o3-mini support reasoning streaming
use_responses_api=True, # reasoning streaming works only with responses api, not completion api
model_kwargs={
"reasoning": {
"effort": "high", # also "low" and "medium" supported
"summary": "auto" # some models support "concise" summary, some "detailed", but auto will always work
}
}
)
```
Now, if you stream events from llm:
```
async for event in llm.astream_events(prompt, version="v2"):
print(event)
```
or
```
for chunk in llm.stream(prompt):
print (chunk)
```
OpenAI API will send you new types of events:
`response.reasoning_summary_text.added`
`response.reasoning_summary_text.delta`
`response.reasoning_summary_text.done`
These events are new, so they were ignored. So I have added support of
these events in function `_convert_responses_chunk_to_generation_chunk`,
so reasoning chunks or full reasoning added to the chunk
additional_kwargs.
Example of how this reasoning summary may be printed:
```
async for event in llm.astream_events(prompt, version="v2"):
if event["event"] == "on_chat_model_stream":
chunk: AIMessageChunk = event["data"]["chunk"]
if "reasoning_summary_chunk" in chunk.additional_kwargs:
print(chunk.additional_kwargs["reasoning_summary_chunk"], end="")
elif "reasoning_summary" in chunk.additional_kwargs:
print("\n\nFull reasoning step summary:", chunk.additional_kwargs["reasoning_summary"])
elif chunk.content and chunk.content[0]["type"] == "text":
print(chunk.content[0]["text"], end="")
```
or
```
for chunk in llm.stream(prompt):
if "reasoning_summary_chunk" in chunk.additional_kwargs:
print(chunk.additional_kwargs["reasoning_summary_chunk"], end="")
elif "reasoning_summary" in chunk.additional_kwargs:
print("\n\nFull reasoning step summary:", chunk.additional_kwargs["reasoning_summary"])
elif chunk.content and chunk.content[0]["type"] == "text":
print(chunk.content[0]["text"], end="")
```
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
When calling `embed_documents` and providing a `chunk_size` argument,
that argument is ignored when `OpenAIEmbeddings` is instantiated with
its default configuration (where `check_embedding_ctx_length=True`).
`_get_len_safe_embeddings` specifies a `chunk_size` parameter but it's
not being passed through in `embed_documents`, which is its only caller.
This appears to be an oversight, especially given that the
`_get_len_safe_embeddings` docstring states it should respect "the set
embedding context length and chunk size."
Developers typically expect method parameters to take effect (also, take
precedence) when explicitly provided, especially when instantiating
using defaults. I was confused as to why my API calls were being
rejected regardless of the chunk size I provided.
This bug also exists in langchain_community package. I can add that to
this PR if requested otherwise I will create a new one once this passes.