Commit Graph

1783 Commits

Author SHA1 Message Date
omahs
6f8735592b
docs,langchain-community: Fix typos in docs and code (#30541)
Fix typos
2025-03-28 19:21:16 +00:00
Philippe PRADOS
92189c8b31
community[patch]: Handle gray scale images in ImageBlobParser (Fixes 30261 and 29586) (#30493)
Fix [29586](https://github.com/langchain-ai/langchain/issues/29586) and
[30261](https://github.com/langchain-ai/langchain/pull/30261)
2025-03-28 10:15:40 -04:00
Kyungho Byoun
e6b6c07395
community: add HANA dialect to SQLDatabase (#30475)
This PR includes support for HANA dialect in SQLDatabase, which is a
wrapper class for SQLAlchemy.

Currently, it is unable to set schema name when using HANA DB with
Langchain. And, it does not show any message to user so that it makes
hard for user to figure out why the SQL does not work as expected.

Here is the reference document for HANA DB to set schema for the
session.

- [SET SCHEMA Statement (Session
Management)](https://help.sap.com/docs/SAP_HANA_PLATFORM/4fe29514fd584807ac9f2a04f6754767/20fd550375191014b886a338afb4cd5f.html)
2025-03-27 15:19:50 -04:00
David Sánchez Sánchez
75823d580b
community: fix perplexity response parameters not being included in model response (#30440)
This pull request includes enhancements to the `perplexity.py` file in
the `chat_models` module, focusing on improving the handling of
additional keyword arguments (`additional_kwargs`) in message processing
methods. Additionally, new unit tests have been added to ensure the
correct inclusion of citations, images, and related questions in the
`additional_kwargs`.

Issue: resolves https://github.com/langchain-ai/langchain/issues/30439

Enhancements to `perplexity.py`:

*
[`libs/community/langchain_community/chat_models/perplexity.py`](diffhunk://#diff-d3e4d7b277608683913b53dcfdbd006f0f4a94d110d8b9ac7acf855f1f22207fL208-L212):
Modified the `_convert_delta_to_message_chunk`, `_stream`, and
`_generate` methods to handle `additional_kwargs`, which include
citations, images, and related questions.
[[1]](diffhunk://#diff-d3e4d7b277608683913b53dcfdbd006f0f4a94d110d8b9ac7acf855f1f22207fL208-L212)
[[2]](diffhunk://#diff-d3e4d7b277608683913b53dcfdbd006f0f4a94d110d8b9ac7acf855f1f22207fL277-L286)
[[3]](diffhunk://#diff-d3e4d7b277608683913b53dcfdbd006f0f4a94d110d8b9ac7acf855f1f22207fR324-R331)

New unit tests:

*
[`libs/community/tests/unit_tests/chat_models/test_perplexity.py`](diffhunk://#diff-dab956d79bd7d17a0f5dea3f38ceab0d583b43b63eb1b29138ee9b6b271ba1d9R119-R275):
Added new tests `test_perplexity_stream_includes_citations_and_images`
and `test_perplexity_stream_includes_citations_and_related_questions` to
verify that the `stream` method correctly includes citations, images,
and related questions in the `additional_kwargs`.
2025-03-26 22:28:08 -04:00
Louis Auneau
0b532a4ed0
community: Azure Document Intelligence parser features not available fixed (#30370)
Thank you for contributing to LangChain!

- **Description:** Azure Document Intelligence OCR solution has a
*feature* parameter that enables some features such as high-resolution
document analysis, key-value pairs extraction, ... In langchain parser,
you could be provided as a `analysis_feature` parameter to the
constructor that was passed on the `DocumentIntelligenceClient`.
However, according to the `DocumentIntelligenceClient` [API
Reference](https://learn.microsoft.com/en-us/python/api/azure-ai-documentintelligence/azure.ai.documentintelligence.documentintelligenceclient?view=azure-python),
this is not a valid constructor parameter. It was therefore remove and
instead stored as a parser property that is used in the
`begin_analyze_document`'s `features` parameter (see [API
Reference](https://learn.microsoft.com/en-us/python/api/azure-ai-formrecognizer/azure.ai.formrecognizer.documentanalysisclient?view=azure-python#azure-ai-formrecognizer-documentanalysisclient-begin-analyze-document)).
I also removed the check for "Supported features" since all features are
supported out-of-the-box. Also I did not check if the provided `str`
actually corresponds to the Azure package enumeration of features, since
the `ValueError` when creating the enumeration object is pretty
explicit.
Last caveat, is that some features are not supported for some kind of
documents. This is documented inside Microsoft documentation and
exception are also explicit.
- **Issue:** N/A
- **Dependencies:** No
- **Twitter handle:** @Louis___A

---------

Co-authored-by: Louis Auneau <louis@handshakehealth.co>
2025-03-26 14:40:14 -04:00
Philippe PRADOS
8e5d2a44ce
community[patch]: update PyPDFParser to take into account filters returned as arrays (#30489)
The image parsing is generating a bug as the the extracted objects for
the /Filter returns sometimes an array, sometimes a string.

Fix [Issue
30098](https://github.com/langchain-ai/langchain/issues/30098)
2025-03-26 14:16:54 -04:00
Ben Chambers
c5e42a4027
community: deprecate graph vector store (#30328)
- **Description:** mark GraphVectorStore `@deprecated`

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-25 13:52:54 +00:00
Ian Muge
a8ce63903d
community: Add edge properties to the gremlin graph schema (#30449)
Description: Extend the gremlin graph schema to include the edge
properties, grouped by its triples; i.e: `inVLabel` and `outVLabel`.
This should give more context when crafting queries to run against a
gremlin graph db
2025-03-24 19:03:01 -04:00
ccurme
b60e6f6efa
community[patch]: update API ref for AmazonTextractPDFParser (#30468) 2025-03-24 23:02:52 +00:00
David Sánchez Sánchez
3ba0d28d8e
community: update perplexity docstring (#30451)
This pull request includes extensive documentation updates for the
`ChatPerplexity` class in the
`libs/community/langchain_community/chat_models/perplexity.py` file. The
changes provide detailed setup instructions, key initialization
arguments, and usage examples for various functionalities of the
`ChatPerplexity` class.

Documentation improvements:

* Added setup instructions for installing the `openai` package and
setting the `PPLX_API_KEY` environment variable.
* Documented key initialization arguments for completion parameters and
client parameters, including `model`, `temperature`, `max_tokens`,
`streaming`, `pplx_api_key`, `request_timeout`, and `max_retries`.
* Provided examples for instantiating the `ChatPerplexity` class,
invoking it with messages, using structured output, invoking with
perplexity-specific parameters, streaming responses, and accessing token
usage and response metadata.Thank you for contributing to LangChain!
2025-03-24 15:01:02 -04:00
Mohammad Mohtashim
33f1ab1528
Youtube Loader load method Fixed (#30314)
- **Description:** Fixed the `YoutubeLoader` loading method not
returning the correct object
- **Issue:** #30309

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2025-03-23 14:48:03 -04:00
Jiwon Kang
699475a01d
community: uuidv1 is unsafe (#30432)
this_row_id previously used UUID v1. However, since UUID v1 can be
predicted if the MAC address and timestamp are known, it poses a
potential security risk. Therefore, it has been changed to UUID v4.
2025-03-22 15:27:49 -04:00
Dhruvajyoti Sarma
31551dab40
feature: added warning when duckdb is used as a vectorstore without pandas (#30435)
added warning when duckdb is used as a vectorstore without pandas being
installed (currently used for similarity search result processing)

Thank you for contributing to LangChain!

- [ ] **PR title**: "community: added warning when duckdb is used as a
vectorstore without pandas"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** displays a warning when using duckdb as a vector
store without pandas being installed, as it is used by the
`similarity_search` function
    - **Issue:** #29933 
    - **Dependencies:** None

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-22 19:27:21 +00:00
Misakar
7750ad588b
community:ChatLiteLLM support output reasoning content (#30430) 2025-03-22 07:43:33 -04:00
ccurme
de3960d285
multiple: enforce standards on tool_choice (#30372)
- Test if models support forcing tool calls via `tool_choice`. If they
do, they should support
  - `"any"` to specify any tool
  - the tool name as a string to force calling a particular tool
- Add `tool_choice` to signature of `BaseChatModel.bind_tools` in core
- Deprecate `tool_choice_value` in standard tests in favor of a boolean
`has_tool_choice`

Will follow up with PRs in external repos (tested in AWS and Google
already).
2025-03-20 17:48:59 +00:00
Daniel Rauber
9b687d7fbd
community[minor]: PlaywrightURLLoader can take stored session file (#30152)
**Description:**
Implements an additional `browser_session` parameter on
PlaywrightURLLoader which can be used to initialize the browser context
by providing a stored playwright context.
2025-03-19 16:29:07 -04:00
Florian Chappaz
07cb41ea9e
community: aligning ChatLiteLLM default parameters with litellm (#30360)
**Description:**
Since `ChatLiteLLM` is forwarding most parameters to
`litellm.completion(...)`, there is no reason to set other default
values than the ones defined by `litellm`.

In the case of parameter 'n', it also provokes an issue when trying to
call a serverless endpoint on Azure, as it is considered an extra
parameter. So we need to keep it optional.

We can debate about backward compatibility of this change: in my
opinion, there should not be big issues since from my experience,
calling `litellm.completion()` without these parameters works fine.

**Issue:** 
- #29679 

**Dependencies:** None
2025-03-19 09:07:28 -04:00
Hodory
57ffacadd0
community: add keep_newlines parameter to process_pages method (#30365)
- **Description:** Adding keep_newlines parameter to process_pages
method with page_ids on Confluence document loader
- **Issue:** N/A (This is an enhancement rather than a bug fix)
- **Dependencies:** N/A
- **Twitter handle:** N/A
2025-03-19 08:57:59 -04:00
wenmeng zhou
5a6e1254a7
support return reasoning content for models like qwq in dashscope (#30317)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
  - Example: "community: add foobar LLM"

here is an example
```python
from langchain_community.chat_models.tongyi import ChatTongyi
from langchain_core.messages import HumanMessage

chatLLM = ChatTongyi(
    model="qwq-32b",   # refer to  https://help.aliyun.com/zh/model-studio/getting-started/models for more models
)
res = chatLLM.stream([HumanMessage(content="how much is 1 plus 1")])
for r in res:
    print(r)
```

```shell
content='' additional_kwargs={'reasoning_content': 'Okay, so the'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' user is asking "'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': 'how much is 1 plus'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 1." Let me think'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' about this. Hmm'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ', 1 plus'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': " 1... That's a pretty"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' basic math question. I'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' remember from arithmetic that when'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' you add 1 and'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 1 together, the'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' result is 2.'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' But wait, maybe'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' I should double-check to be'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' sure. Let me visualize it'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': '. If I have one apple'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' and someone gives me another'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' apple, I have'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' two apples total. Yeah,'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' that makes sense. Or'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' on a number line'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ', starting at 1 and'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' moving 1 step forward lands'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' you at 2'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': '. \n\nIs there any'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' context where 1 +'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 1 might not equal'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 2? Like in different'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' number bases? Let'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': "'s see. In base"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 10, which'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' is standard,'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 1+1 is'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 2. But if'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' we were in binary'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' (base 2'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': '), 1 +'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 1 would be 1'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': '0. But the question'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': " doesn't specify a base,"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' so I think the'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' default is base 10'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': '. \n\nAlternatively, could'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' this be a trick'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' question? Maybe they'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': "'re referring to something else"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ', like in Boolean'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' algebra where 1 +'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 1 might still'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' be 1 in'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' some contexts? Wait'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ', no, in Boolean'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' addition, 1'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' + 1 is typically'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': " 1 because it's logical"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' OR. But the'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' question just says "1'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' plus 1," which is'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' more arithmetic than Boolean.'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' \n\nOr maybe in some other'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' mathematical structure like modular arithmetic?'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' For example, modulo'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 2,'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 1 + 1 is'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 0. But again'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ', unless specified, it'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': "'s probably standard addition"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': '. \n\nThe user might be'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' testing if I know basic'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' math, or maybe'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': " they're a student just"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' starting out. Either way,'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' the straightforward answer is'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 2. I should also'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': " consider if there's any cultural"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' references or jokes where'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 1 + 1 equals'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' something else, but I can'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': "'t think of any common"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' ones. \n\nAlternatively'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ', in some contexts like'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' in chemistry,'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' 1 + 1 could refer'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' to mixing solutions, but that'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': "'s not standard. The question"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' is pretty simple,'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' so I think the answer'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' is 2. To'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' be thorough, maybe mention'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' that in standard arithmetic it'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': "'s 2, but if"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': " there's a different"} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' context, the answer'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' might vary. But since'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' no context is given'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ', 2 is the safest'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ' answer.'} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='The result' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' of 1 plus' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' 1 is **2**.' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' \n\nIn standard arithmetic (base' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' 10), adding' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' 1 and 1 together' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' yields 2. This is' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' a fundamental mathematical principle. If' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' the question involves a different context' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' (e.g., binary' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=', modular arithmetic, or a' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' metaphorical meaning), it' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' would need clarification,' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' but under typical circumstances, the' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content=' answer is **2**.' additional_kwargs={'reasoning_content': ''} response_metadata={} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'
content='' additional_kwargs={'reasoning_content': ''} response_metadata={'finish_reason': 'stop', 'request_id': '4738c641-6bd8-9efc-a4fe-d929d4e62bef', 'token_usage': {'input_tokens': 16, 'output_tokens': 560, 'total_tokens': 576}} id='run-bd026918-16e5-429f-aa75-3ff7701e9f8d'

```

Co-authored-by: ccurme <chester.curme@gmail.com>
2025-03-18 11:43:10 -04:00
amuwall
f6a17fbc56
community: fix import exception too constrictive (#30218)
Fix this issue #30097
2025-03-17 22:09:02 -04:00
qonnop
036f00dc92
community: support in-memory data (Blob.from_data) in all audio parsers (#30262)
OpenAIWhisperParser, OpenAIWhisperParserLocal, YandexSTTParser do not
handle in-memory audio data (loaded via Blob.from_data) correctly. They
require Blob.path to be set and AudioSegment is always read from the
file system. In-memory data is handled correctly only for
FasterWhisperParser so far. I changed OpenAIWhisperParser,
OpenAIWhisperParserLocal, YandexSTTParser accordingly to match
FasterWhisperParser.
Thanks for reviewing the PR!

Co-authored-by: qonnop <qonnop@users.noreply.github.com>
2025-03-17 19:52:33 -04:00
Bae-ChangHyun
d8510270ee
community: add 'extract' mode to FireCrawlLoader for structured data extraction (#30242)
**Description:** 
Added an 'extract' mode to FireCrawlLoader that enables structured data
extraction from web pages. This feature allows users to Extract
structured data from a single URLs, or entire websites using Large
Language Models (LLMs).
You can show more params and usage on [firecrawl
docs](https://docs.firecrawl.dev/features/extract-beta).
You can extract from only one url now.(it depends on firecrawl's extract
method)

**Dependencies:** 
No new dependencies required. Uses existing FireCrawl API capabilities.

---------

Co-authored-by: chbae <chbae@gcsc.co.kr>
Co-authored-by: ccurme <chester.curme@gmail.com>
2025-03-17 15:15:57 +00:00
qonnop
747efa16ec
community: fix CPU support for FasterWhisperParser (implicit compute type for WhisperModel) (#30263)
FasterWhisperParser fails on a machine without an NVIDIA GPU: "Requested
float16 compute type, but the target device or backend do not support
efficient float16 computation." This problem arises because the
WhisperModel is called with compute_type="float16", which works only for
NVIDIA GPU.

According to the [CTranslate2
docs](https://opennmt.net/CTranslate2/quantization.html#bit-floating-points-float16)
float16 is supported only on NVIDIA GPUs. Removing the compute_type
parameter solves the problem for CPUs. According to the [CTranslate2
docs](https://opennmt.net/CTranslate2/quantization.html#quantize-on-model-loading)
setting compute_type to "default" (standard when omitting the parameter)
uses the original compute type of the model or performs implicit
conversion for the specific computation device (GPU or CPU). I suggest
to remove compute_type="float16".

@hulitaitai you are the original author of the FasterWhisperParser - is
there a reason for setting the parameter to float16?

Thanks for reviewing the PR!

Co-authored-by: qonnop <qonnop@users.noreply.github.com>
2025-03-14 22:22:29 -04:00
Priyansh Agrawal
f54f14b747
community: cube document loader - do not load non-public dimensions and measures (#30286)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
  - Example: "community: add foobar LLM"

- **Description:** Do not load non-public dimensions and measures
(public: false) with Cube semantic loader

- **Issue:** Currently, non-public dimensions and measures are loaded by
the Cube document loader which leads to downstream applications using
these which is not allowed by Cube.


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-03-14 15:07:56 -04:00
homeffjy
2c99f12062
community[patch]: fix bilibili loader handling of multi-page content (#30283)
Previously the loader would only extract subtitles from the first page
of multi-page videos.
2025-03-14 14:53:03 -04:00
Priyansh Agrawal
f27e2d7ce7
community: cube document loader - fix logging (#30285)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
  - Example: "community: add foobar LLM"

- **Description:** Fix bad log message on line#56 and replace f-string
logs with format specifiers

- **Issue:** Log messages such as this one
`INFO:langchain_community.document_loaders.cube_semantic:Loading
dimension values for: {dimension_name}...`

- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, eyurtsev, ccurme, vbarda, hwchase17.
2025-03-14 11:36:18 -04:00
pulvedu
d0bfc7f820
community[fix] : Pass API_KEY as argument (#30272)
PR Title:
community: Fix Pass API_KEY as argument

PR Message:
Description:
This PR fixes validation error "Value error, Did not find
tavily_api_key, please add an environment variable `TAVILY_API_KEY`
which contains it, or pass `tavily_api_key` as a named parameter."

Dependencies:
No new dependencies introduced.

---------

Co-authored-by: pulvedu <dustin@tavily.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-13 22:19:31 +00:00
Hugh Gao
aa6dae4a5b
community: Remove the system message count limit for ChatTongyi. (#30192)
## Description
The models in DashScope support multiple SystemMessage. Here is the
[Doc](https://bailian.console.aliyun.com/model_experience_center/text#/model-market/detail/qwen-long?tabKey=sdk),
and the example code on the document page:
```python
import os
from openai import OpenAI

client = OpenAI(
    api_key=os.getenv("DASHSCOPE_API_KEY"),  # 如果您没有配置环境变量,请在此处替换您的API-KEY
    base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",  # 填写DashScope服务base_url
)
# 初始化messages列表
completion = client.chat.completions.create(
    model="qwen-long",
    messages=[
        {'role': 'system', 'content': 'You are a helpful assistant.'},
        # 请将 'file-fe-xxx'替换为您实际对话场景所使用的 file-id。
        {'role': 'system', 'content': 'fileid://file-fe-xxx'},
        {'role': 'user', 'content': '这篇文章讲了什么?'}
    ],
    stream=True,
    stream_options={"include_usage": True}
)

full_content = ""
for chunk in completion:
    if chunk.choices and chunk.choices[0].delta.content:
        # 拼接输出内容
        full_content += chunk.choices[0].delta.content
        print(chunk.model_dump())

print({full_content})
```
Tip: The example code is for OpenAI, but the document said that it also
supports the DataScope API, and I tested it, and it works.
```
Is the Dashscope SDK invocation method compatible?

Yes, the Dashscope SDK remains compatible for model invocation. However, file uploads and file-ID retrieval are currently only supported via the OpenAI SDK. The file-ID obtained through this method is also compatible with Dashscope for model invocation.
```
2025-03-10 08:58:40 -04:00
Bharat
b9746a6910
fixes#30182: update tool names to match OpenAI function name pattern (#30183)
The OpenAI API requires function names to match the pattern
'^[a-zA-Z0-9_-]+$'. This updates the JIRA toolkit's tool names to use
underscores instead of spaces to comply with this requirement and
prevent BadRequestError when using the tools with OpenAI functions.

Error fixed:
```
File "langgraph-bug-fix/.venv/lib/python3.13/site-packages/openai/_base_client.py", line 1023, in _request
    raise self._make_status_error_from_response(err.response) from None
openai.BadRequestError: Error code: 400 - {'error': {'message': "Invalid 'tools[0].function.name': string does not match pattern. Expected a string that matches the pattern '^[a-zA-Z0-9_-]+$'.", 'type': 'invalid_request_error', 'param': 'tools[0].function.name', 'code': 'invalid_value'}}
During task with name 'agent' and id 'aedd7537-e8d5-6678-d0c5-98129586d3ac'
```

Issue:#30182
2025-03-08 20:48:25 -05:00
ccurme
a7ab5e8372
community[patch]: ChatPerplexity: track usage metadata (#30175) 2025-03-07 23:25:05 +00:00
andyzhou1982
9e863c89d2
add JiebaLinkExtractor for chinese doc extracting (#30150)
Thank you for contributing to LangChain!

- [ ] **PR title**: "community: chinese doc extracting"


- [ ] **PR message**: 
- **Description:** add jieba_link_extractor.py for chinese doc
extracting
    - **Dependencies:** jieba


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
  /doc/doc/integrations/providers/jieba.md
  /doc/doc/integrations/vectorstores/jieba_link_extractor.ipynb
  /libs/packages.yml

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-07 20:21:46 +00:00
Pat Patterson
b3dc66f7a3
community: fix AttributeError when creating LanceDB vectorstore (#30127)
**Description:**

This PR adds a call to `guard_import()` to fix an AttributeError raised
when creating LanceDB vectorstore instance with an existing LanceDB
table.

**Issue:**

This PR fixes issue #30124.

**Dependencies:**

No additional dependencies.

**Twitter handle:**

[@metadaddy](https://x.com/metadaddy), but I spend more time at
[@metadaddy.net](https://bsky.app/profile/metadaddy.net) these days.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-05 23:04:38 +00:00
Hugh Gao
9b7b8e4a1a
community: make DashScope models support Partial Mode for text continuation. (#30108)
## Description
make DashScope models support Partial Mode for text continuation.

For text continuation in ChatTongYi, it supports text continuation with
a prefix by adding a "partial" argument in AIMessage. The document is
[Partial Mode
](https://help.aliyun.com/zh/model-studio/user-guide/partial-mode?spm=a2c4g.11186623.help-menu-2400256.d_1_0_0_8.211e5b77KMH5Pn&scm=20140722.H_2862210._.OR_help-T_cn~zh-V_1).
The API example is:
```py
import os
import dashscope

messages = [{
    "role": "user",
    "content": "请对“春天来了,大地”这句话进行续写,来表达春天的美好和作者的喜悦之情"
},
{
    "role": "assistant",
    "content": "春天来了,大地",
    "partial": True
}]
response = dashscope.Generation.call(
    api_key=os.getenv("DASHSCOPE_API_KEY"),
    model='qwen-plus',
    messages=messages,
    result_format='message',  
)

print(response.output.choices[0].message.content)
```

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-03-05 16:22:14 +00:00
黑牛
f0153414d5
Add request_id field to improve request tracking and debugging (for Tongyi model) (#30110)
- **Description**: Added the request_id field to the check_response
function to improve request tracking and debugging, applicable for the
Tongyi model.
- **Issue**: None
- **Dependencies**: None
- **Twitter handle**: None

- **Add tests and docs**: None

- **Lint and test**: Ran `make format`, `make lint`, and `make test` to
ensure the code meets formatting and testing requirements.
2025-03-05 11:03:47 -05:00
Manthan Surkar
1ee8aceaee
community: fix Jira API wrapper failing initialization with cloud param (#30117)
### **Description**  
Converts the boolean `jira_cloud` parameter in the Jira API Wrapper to a
string before initializing the Jira Client. Also adds tests for the
same.

### **Issue**  
[Jira API Wrapper
Bug](8abb65e138/libs/community/langchain_community/utilities/jira.py (L47))

```python
jira_cloud_str = get_from_dict_or_env(values, "jira_cloud", "JIRA_CLOUD")
jira_cloud = jira_cloud_str.lower() == "true"
```

The above code has a bug where the value of `"jira_cloud"` is a boolean.
If it is passed, calling `.lower()` on a boolean raises an error.
Additionally, `False` cannot be passed explicitly since
`get_from_dict_or_env` falls back to environment variables.

Relevant code in `langchain_core`:  

[Source](https://github.com/thesmallstar/langchain/blob/master/.venv/lib/python3.13/site-packages/langchain_core/utils/env.py#L46)

```python
if isinstance(key, str) and key in data and data[key]:  # Here, data[key] is False
```

This PR fixes both issues.

### **Twitter Handle**  
[Manthan Surkar](https://x.com/manthan_surkar)
2025-03-05 10:49:25 -05:00
Philippe PRADOS
4710c1fa8c
community[minor]: Fix regular expression in visualize and outlines modules. (#30002)
Fix invalid escape characteres
2025-03-04 12:23:48 -05:00
Samuel Dion-Girardeau
ccb64e9f4f
docs: Fix typo in code samples for max_tokens_for_prompt (#30088)
- **Description:** Fix typo in code samples for max_tokens_for_prompt.
Code blocks had singular "token" but the method has plural "tokens".
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** N/A
2025-03-04 09:11:21 -05:00
cold-eye
7c175e3fda
Update ascend.py (#30060)
add batch_size to fix oom when embed large amount texts

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2025-03-01 14:10:41 -05:00
TheSongg
86b364de3b
Add asynchronous generate interface (#30001)
- [ ] **PR title**: [langchain_community.llms.xinference]: Add
asynchronous generate interface

- [ ] **PR message**: The asynchronous generate interface support stream
data and non-stream data.
          
        chain = prompt | llm
        async for chunk in chain.astream(input=user_input):
            yield chunk


- [ ] **Add tests and docs**:

       from langchain_community.llms import Xinference
       from langchain.prompts import PromptTemplate

       llm = Xinference(
server_url="http://0.0.0.0:9997", # replace your xinference server url
model_uid={model_uid} # replace model_uid with the model UID return from
launching the model
           stream = True
            )
prompt = PromptTemplate(input=['country'], template="Q: where can we
visit in the capital of {country}? A:")
       chain = prompt | llm
       async for chunk in chain.astream(input=user_input):
           yield chunk
2025-02-28 12:32:44 -05:00
Fakai Zhao
f07338d2bf
Implementing the MMR algorithm for OLAP vector storage (#30033)
Thank you for contributing to LangChain!

-  **Implementing the MMR algorithm for OLAP vector storage**: 
  - Support Apache Doris and StarRocks OLAP database.
- Example: "vectorstore.as_retriever(search_type="mmr",
search_kwargs={"k": 10})"


- **Implementing the MMR algorithm for OLAP vector storage**: 
    - **Apache Doris
    - **StarRocks
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- **Add tests and docs**: 
- Example: "vectorstore.as_retriever(search_type="mmr",
search_kwargs={"k": 10})"


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: fakzhao <fakzhao@cisco.com>
2025-02-28 08:50:22 -05:00
Daniel Rauber
186cd7f1a1
community: PlaywrightURLLoader should wait for page load event before attempting to extract data (#30043)
## Description

The PlaywrightURLLoader should wait for a page to be loaded before
attempting to extract data.
2025-02-28 08:45:51 -05:00
DamonXue
156a60013a
docs: fix tavily_search code-block format. (#30012)
This pull request includes a change to the `TavilySearchResults` class
in the `tool.py` file, which updates the code block format in the
documentation.

Documentation update:

*
[`libs/community/langchain_community/tools/tavily_search/tool.py`](diffhunk://#diff-e3b6a980979268b639c6a86e9b182756b0f7c7e9e5605e613bc0a72ea6aa5301L54-R59):
Changed the code block format from Python to JSON in the example
provided in the docstring.Thank you for contributing to LangChain!
2025-02-27 10:55:15 -05:00
kawamou
8977ac5ab0
community[fix]: Handle None value in raw_content from Tavily API response (#30021)
## **Description:**

When using the Tavily retriever with include_raw_content=True, the
retriever occasionally fails with a Pydantic ValidationError because
raw_content can be None.

The Document model in langchain_core/documents/base.py requires
page_content to be a non-None value, but the Tavily API sometimes
returns None for raw_content.

This PR fixes the issue by ensuring that even when raw_content is None,
an empty string is used instead:

```python
page_content=result.get("content", "")
            if not self.include_raw_content
            else (result.get("raw_content") or ""),
2025-02-27 10:53:53 -05:00
Lakindu Boteju
f69deee1bd
community: Add cost data for aws bedrock anthropic.claude-3-7 model (#30016)
This pull request includes updates to the
`libs/community/langchain_community/callbacks/bedrock_anthropic_callback.py`
file to add a new model version to the list of supported models.

Updates to supported models:

* Added support for the `anthropic.claude-3-7-sonnet-20250219-v1:0`
model with a rate of `0.003` for 1000 input tokens.
* Added support for the `anthropic.claude-3-7-sonnet-20250219-v1:0`
model with a rate of `0.015` for 1000 output tokens.

AWS Bedrock pricing reference : https://aws.amazon.com/bedrock/pricing
2025-02-27 09:51:52 -05:00
talos
9cd20080fc
community: Update SQLiteVec table trigger (#29914)
**Issue**: This trigger can only be used by the first table created.
Cannot create additional triggers for other tables.

**fixed**: Update the trigger name so that it can be used for new
tables.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-02-26 15:10:13 +00:00
Artem Yankov
6177b9f9ab
community: add title, score and raw_content to tavily search results (#29995)
**Description:**

Tavily search results returned from API include useful information like
title, score and (optionally) raw_content that is missed in wrapper
although it's documented there properly. Add this data to the result
structure.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-02-25 23:27:21 +00:00
Julien Elkaim
e586bffe51
community: Repair embeddings/llamacpp's embed_query method (#29935)
**Description:** As commented on the commit
[41b6a86](41b6a86bbe)
it introduced a bug for when we do an embedding request and the model
returns a non-nested list. Typically it's the case for model
**_nomic-embed-text_**.

- I added the unit test, and ran `make format`, `make lint` and `make
test` from the `community` package.
- No new dependency.

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-02-23 19:32:17 +00:00
Saraswathy Kalaiselvan
5ca4933b9d
docs: updated ChatLiteLLM model_kwargs description (#29937)
- [x] **PR title**: docs: (community) update ChatLiteLLM

- [x] **PR message**:
- **Description:** updated description of model_kwargs parameter which
was wrongly describing for temperature.
    - **Issue:** #29862 
    - **Dependencies:** N/A
    
- [x] **Add tests and docs**: N/A

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-02-23 19:27:13 +00:00
Jean-Philippe Dournel
ebe38baaf9
community/mlx_pipeline: fix crash at mlx call (#29915)
- **Description:** 
Since mlx_lm 0.20, all calls to mlx crash due to deprecation of the way
parameters are passed to methods generate and generate_step.
Parameters top_p, temp, repetition_penalty and repetition_context_size
are not passed directly to those method anymore but wrapped into
"sampler" and "logit_processor".


- **Dependencies:** mlx_lm (optional)

-  **Tests:** 
I've had a new test to existing test file:
tests/integration_tests/llms/test_mlx_pipeline.py

---------

Co-authored-by: Jean-Philippe Dournel <jp@insightkeeper.io>
2025-02-21 09:14:53 -05:00
Chaunte W. Lacewell
d972c6d6ea
partners: add langchain-vdms (#29857)
**Description:** Deprecate vdms in community, add integration
langchain-vdms, and update any related files
**Issue:** n/a
**Dependencies:** langchain-vdms
**Twitter handle:** n/a

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-02-20 19:48:46 -05:00