Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
Description: Simply pass kwargs to allow arguments like "where" to be
propagated
Issue: Previously, db.delete(where={}) wouldn't work for chroma
vectorstores
Dependencies: N/A
Twitter handle: N/A
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Description: Send both the query and query_embedding to the Databricks
index for hybrid search.
Issue: When using hybrid search with non-Databricks managed embedding we
currently don't pass both the embedding and query_text to the index.
Hybrid search requires both of these. This change fixes this issue for
both `similarity_search` and `similarity_search_by_vector`.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
# Issue
As of late July, Perplexity [no longer supports Llama 3
models](https://docs.perplexity.ai/changelog/introducing-new-and-improved-sonar-models).
# Description
This PR updates the default model and doc examples to reflect their
latest supported model. (Mostly updating the same places changed by
#23723.)
# Twitter handle
`@acompa_` on behalf of the team at Not Diamond. Check us out
[here](https://notdiamond.ai).
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This PR adds tiny improvements to the `GithubFileLoader` document loader
and its code sample, addressing the following issues:
1. Currently, the `file_extension` argument of `GithubFileLoader` does
not change its behavior at all.
1. The `GithubFileLoader` sample code in
`docs/docs/integrations/document_loaders/github.ipynb` does not work as
it stands.
The respective solutions I propose are the following:
1. Remove `file_extension` argument from `GithubFileLoader`.
1. Specify the branch as `master` (not the default `main`) and rename
`documents` as `document`.
---------
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
When I used the Neo4JGraph enhanced_schema=True option, I ran into an
error because a prop min_size of None was compared numerically with an
int.
The fix I applied is similar to the pattern of skipping embeddings
elsewhere in the file.
Co-authored-by: ccurme <chester.curme@gmail.com>
Description: DeepInfra 500 errors have useful information in the text
field that isn't being exposed to the user. I updated the error message
to fix this.
As an example, this code
```
from langchain_community.chat_models import ChatDeepInfra
from langchain_core.messages import HumanMessage
model = "meta-llama/Meta-Llama-3-70B-Instruct"
deepinfra_api_token = "..."
model = ChatDeepInfra(model=model, deepinfra_api_token=deepinfra_api_token)
messages = [HumanMessage("All work and no play makes Jack a dull boy\n" * 9000)]
response = model.invoke(messages)
```
Currently gives this error:
```
langchain_community.chat_models.deepinfra.ChatDeepInfraException: DeepInfra Server: Error 500
```
This change would give the following error:
```
langchain_community.chat_models.deepinfra.ChatDeepInfraException: DeepInfra Server error status 500: {"error":{"message":"Requested input length 99009 exceeds maximum input length 8192"}}
```
**Refactor PebbloRetrievalQA**
- Created `APIWrapper` and moved API logic into it.
- Created smaller functions/methods for better readability.
- Properly read environment variables.
- Removed unused code.
- Updated models
**Issue:** NA
**Dependencies:** NA
**tests**: NA
**Refactor PebbloSafeLoader**
- Created `APIWrapper` and moved API logic into it.
- Moved helper functions to the utility file.
- Created smaller functions and methods for better readability.
- Properly read environment variables.
- Removed unused code.
**Issue:** NA
**Dependencies:** NA
**tests**: Updated
Description: The neo4j driver can raise a SessionExpired error, which is
considered a retriable error. If a query fails with a SessionExpired
error, this change retries every query once. This change will make the
neo4j integration less flaky.
Twitter handle: noahmay_
- **Description:** Updating metadata for sharepoint loader with full
path i.e., webUrl
- **Issue:** NA
- **Dependencies:** NA
- **Tests:** NA
- **Docs** NA
Co-authored-by: dristy.cd <dristy@clouddefense.io>
Co-authored-by: ccurme <chester.curme@gmail.com>
This will allow complextype metadata to be returned. the current
implementation throws error when dealing with nested metadata
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** The following
[line](fd546196ef/libs/community/langchain_community/document_loaders/parsers/audio.py (L117))
in `OpenAIWhisperParser` returns a text object for some odd reason
despite the official documentation saying it should return `Transcript`
Instance which should have the text attribute. But for the example given
in the issue and even when I tried running on my own, I was directly
getting the text. The small PR accounts for that.
- **Issue:** : #25218
I was able to replicate the error even without the GenericLoader as
shown below and the issue was with `OpenAIWhisperParser`
```python
parser = OpenAIWhisperParser(api_key="sk-fxxxxxxxxx",
response_format="srt",
temperature=0)
list(parser.lazy_parse(Blob.from_path('path_to_file.m4a')))
```
- [x] NatbotChain: move to community, deprecate langchain version.
Update to use `prompt | llm | output_parser` instead of LLMChain.
- [x] LLMMathChain: deprecate + add langgraph replacement example to API
ref
- [x] HypotheticalDocumentEmbedder (retriever): update to use `prompt |
llm | output_parser` instead of LLMChain
- [x] FlareChain: update to use `prompt | llm | output_parser` instead
of LLMChain
- [x] ConstitutionalChain: deprecate + add langgraph replacement example
to API ref
- [x] LLMChainExtractor (document compressor): update to use `prompt |
llm | output_parser` instead of LLMChain
- [x] LLMChainFilter (document compressor): update to use `prompt | llm
| output_parser` instead of LLMChain
- [x] RePhraseQueryRetriever (retriever): update to use `prompt | llm |
output_parser` instead of LLMChain
**Description**
Fix the asyncronous methods to retrieve documents from AzureSearch
VectorStore. The previous changes from [this
commit](ffe6ca986e)
create a similar code for the syncronous methods and the asyncronous
ones but the asyncronous client return an asyncronous iterator
"AsyncSearchItemPaged" as said in the issue #24740.
To solve this issue, the syncronous iterators in asyncronous methods
where changed to asyncronous iterators.
@chrislrobert said in [this
comment](https://github.com/langchain-ai/langchain/issues/24740#issuecomment-2254168302)
that there was a still a flaw due to `with` blocks that close the client
after each call. I removed this `with` blocks in the `async_client`
following the same pattern as the sync `client`.
In order to close up the connections, a __del__ method is included to
gently close up clients once the vectorstore object is destroyed.
**Issue:** #24740 and #24064
**Dependencies:** No new dependencies for this change
**Example notebook:** I created a notebook just to test the changes work
and gives the same results as the syncronous methods for vector and
hybrid search. With these changes, the asyncronous methods in the
retriever work as well.

**Lint and test**: Passes the tests and the linter
This adds `args_schema` member to `SearxSearchResults` tool. This member
is already present in the `SearxSearchRun` tool in the same file.
I was having `TypeError: Type is not JSON serializable:
AsyncCallbackManagerForToolRun` being thrown in langserve playground
when I was using `SearxSearchResults` tool as a part of chain there.
This fixes the issue, so the error is not raised anymore.
This is a example langserve app that was giving me the error, but it
works properly after the proposed fix:
```python
#!/usr/bin/env python
from fastapi import FastAPI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI
from langchain_community.utilities import SearxSearchWrapper
from langchain_community.tools.searx_search.tool import SearxSearchResults
from langserve import add_routes
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
model = ChatOpenAI()
s = SearxSearchWrapper(searx_host="http://localhost:8080")
search = SearxSearchResults(wrapper=s)
search_chain = (
{"context": search, "question": RunnablePassthrough()}
| prompt
| model
| StrOutputParser()
)
app = FastAPI()
add_routes(
app,
search_chain,
path="/chain",
)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="localhost", port=8000)
```
- **Description:** Standardize SparkLLM, include:
- docs, the issue #24803
- to support stream
- update api url
- model init arg names, the issue #20085
- **Description:** This PR implements the `bind_tool` functionality for
ChatZhipuAI as requested by the user. ChatZhipuAI models support tool
calling according to the `OpenAI` tool format, as outlined in their
official documentation [here](https://open.bigmodel.cn/dev/api#glm-4).
- **Issue:** ##23868
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
- In the in ` embedding-3 ` and later models of Zhipu AI, it is
supported to specify the dimensions parameter of Embedding. Ref:
https://bigmodel.cn/dev/api#text_embedding-3 .
- Add test case for `embedding-3` model by assigning dimensions.
This PR deprecates the beta upsert APIs in vectorstore.
We'll introduce them in a V2 abstraction instead to keep the existing
vectorstore implementations lighter weight.
The main problem with the existing APIs is that it's a bit more
challenging to
implement the correct behavior w/ respect to IDs since ID can be present
in
both the function signature and as an optional attribute on the document
object.
But VectorStores that pass the standard tests should have implemented
the semantics properly!
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR gets rid `root_validators(allow_reuse=True)` logic used in
EdenAI Tool in preparation for pydantic 2 upgrade.
- add another test to secret_from_env_factory
Thank you for contributing to LangChain!
- [X] **PR title**: "community: fix valueerror mentions wrong argument
missing"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [X] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** when faiss.py has a None relevance_score_fn it raises
a ValueError that says a normalize_fn_score argument is needed.
Co-authored-by: ccurme <chester.curme@gmail.com>